【导语】“yuan0379”通过精心收集,向本站投稿了9篇四年级奥数行程应用题,小编在这里给大家带来四年级奥数行程应用题,希望大家喜欢!
- 目录
篇1:四年级奥数行程应用题
四年级奥数行程应用题
甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
解答:
大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。为了节省时间,肯定是尽可能让速度快的`人承担往返送手电筒的任务。那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。所以花费的总时间为:2+1+10+2+2=17分钟。
篇2:四年级奥数应用题
四年级奥数应用题
经过主席台 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要多少分钟? 分析:从表面上来看这道题与前面的例是完全不同但从实质上看,它是植树问题的逆解题目.根据题目中三年级参加运动会的总人数与每行的人数.可求出三年级共列队多少行?每行相当于已知的树木棵数,每行前后间隔2米,相当于每两棵树间的`距离,这样可以求出入场式队伍的全长;再用队伍的长度加上主席台的长度,就是每个人通过主席台所走的路程,再用所行的路程除以行进的速度,就可以求出通过主席台所需的时间。 解答:(1)三年级入场式列队的行数是:125÷5=25(行);(2)三年级入场式队伍的全长是:2×(25-1)=48(米);(3)三年级入场式队伍的全长加上主席台的长度,即每个人通过主席台所走的路程是:48+42=90(米);(4)通过主席台所走的路程是:90÷45=2(分钟) 综合算式:[2×(125÷5-1)+42]÷45=2(分钟)
答:通过主席台需要2分钟。
篇3:四年级奥数经典试题之行程问题
四年级奥数经典试题之行程问题
专题简析:
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2 小时后相遇。
练习一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的`速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了 500×10=5000米。
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。
练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?
篇4:四年级下一个等式奥数应用题
四年级下一个等式奥数应用题
编者小语:为四年级的同学挑选了一道奥数应用题,同学们要仔细对待这道锻炼逻辑思维能力的应用题。下面就开始四年级奥数应用题:下一个等式
老师在黑板上写下四行数字,并在每行中用加号和等号连接每个数字,变成四个等式:
1+2=3
4+5+6=7+8
9+10+11+12=13+14+15
16+17+18+19+20=21+22+23+24
请你想一想,下一个等式是什么,你还能继续写下去吗?
解答:我们先来看看前四个等式排列的规律:第一行开头的数是1,共3个数,前面两个数的和等于后面一个数;第二行开头的数是1+3,共5个数,前面三个数的和等于后面两个数的和;第三行开头的数是1+3+5,共七个数,前面四个数的.和等于后面三个数的和;第四行开头的数是1+3+5+7,共九个数,前面五个数的和,等于后面四个数的和;由此看出它们的规律是:第n行开头的数应该是1+3+5+……(2n-1),即n2,共有2n+1个数,前面n+1个数的和,等于后面n个数的和。接下去写的是第五行的等式。开头的数是1+3+5+7+9=52=25,共有2×5+1=11个数。即:25+26+27+28+29+30=31+32+33+34+35
篇5:四年级奥数思维训练:应用题大作战
四年级奥数思维训练:应用题大作战
1. 同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人.参加队列训练的学生最少有_____人.
2. 把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份4个余3个.这堆苹果共有_____个.
3. 一筐苹果,如果按5个一堆放,最后多出3个.如果按6个一堆放,最后多出4个.如果按7个一堆放,还多出1个.这筐苹果至少有_____个.
答案:
1. 46人.
如果总人数少6人,则每排8人和每排10人,均恰好排完无剩余.由此可见,人数比10和8的最小公倍数多6人,10和8的最小公倍数是40,所以参加队列训练的学生至少有46人.
2. 71
依题意知,这堆苹果总个数,添进1个苹果后,正好是9,8,4的倍数.因为9,8,4的.最小公倍数是9 8=72,所以这堆苹果至少有9 8-1=71(个).
[注]本题为什么求9,8,4的最小公倍数呢?这是根据限制条件“这堆苹果共几十个”决定的.若限制条件改为“这堆苹果的个数在100-200之间” 的话,那么这堆苹果共有9 8 2-1=141(个).因此,在解答问题时,一定要把条件看清楚,尤其要注意“隐含条件”的应用.
3. 148
从6和7的公倍数42,84,126,……中找到除以5余3的数是378(可以先找到除以5余1的数126,再乘以3即可).
从5和7的公倍数35,70,……中找到除以6余4的数是70.
从5和6的公倍数30,60,90,120,……中找到除以7余1的数是120.
5,6,7的最小公倍数是5 6 7=210.
所以,这筐苹果至少有
568-210 2=148个.
篇6:奥数专项训练应用题及答案之时间行程的问题
奥数专项训练应用题及答案之时间行程的问题
一、解答题(共13小题,满分0分)
1.钟敏家有一个闹钟,每小时比标准时间快2分钟.星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她帮助妈妈做饭.钟敏应当将闹钟的铃定在几点几分上?
2.小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟.小明的手表一天慢几分几秒?
3.有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?
4.一辆汽车的速度是72千米/时,现有一块每小时慢20秒的表,用这块表计时,测得这辆汽车的速度是多少?(保留一位小数)
5.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走得不正常,每个白天快分,每个夜间慢分.如果在10月1日清晨将挂钟对准,那么时间恰好快3分?
6.某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒.问:这块手表一昼夜比标准时间差多少秒?
7.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了20分钟.中午12点放学,小明回到家一看钟才11点整.假定小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分钟?
8.肖健家有一个闹钟,每小时比标准时间慢半分钟.有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分.这个闹钟将在标准时间的什么时刻响铃?
9.爷爷的老式时钟的时针与分针每隔66分重合一次.如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?
10.小明家有两个旧挂钟,一个每天快20分,一个每天慢30分.现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?
11.一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?
12.某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟(如图).当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?
13.李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分.他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟.夜里11点下班,李叔叔回到家一看,钟才9点钟.如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?
参考答案与试题解析
一、解答题(共13小题,满分0分)
1.钟敏家有一个闹钟,每小时比标准时间快2分钟.星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她帮助妈妈做饭.钟敏应当将闹钟的铃定在几点几分上?
考点:时间与钟面.
分析:根据条件可知闹钟走62分钟,标准时间是60分钟,由此标准时间和闹钟的比是60:62,标准时间经过的时间是11:30﹣7:00,由此即可求出闹钟经过的时间,那问题即可解决.
解答:解:62÷60=,
11:30﹣7:00=4.5(小时),
4.5×=4.65(小时),
=4(小时)39(分钟),
7小时+4小时39分钟=11小时39分钟;
答:钟敏应当将闹钟的铃定在11小时39分钟.
点评:解答此题的关键是,找出标准时间和闹钟的时间的比,再根据经过的标准时间,即可求出闹钟经过的时间.
2.小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟.小明的手表一天慢几分几秒?
考点:时间与钟面.
分析:根据题意知道,从晚上8点将手表对准,到第二天下午4点,共经过了[(12﹣8)+4+12]小时,由于在此时间里手表慢了3分钟,那经历24小时慢的时间即可求出.
解答:解:从晚上8点到第二天下午4点是:(12﹣8)+4+12=20(小时),
一天有24小时,
3÷(20÷24)=3×=3.6(分钟),
3.6分钟=3分36秒;
答:小明的手表一天慢3分36秒.
点评:解答此题的关键是,根据题意,找出对应量,列式解答即可.
3.有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?
考点:时间与钟面.
分析:根据每小时快15秒,那多长时间快半天即可求出,由此即可求出下一次准确的时间.
解答:解:12×3600÷15=2880(小时),
2880÷24=120(天),
又因为,31+31+30+30=122(天),
也就是两个月以后的今天,也就是说算到10月份再减去1.5天(因为是从7月1号中午12点开始计时,这时半天已经过去了),
所以下次准确对时间是在10.29号正午12:00.
答:下一次准确的时间是10.29号正午12:00.
点评:解答此题的关键是,根据题意求出多长时间快半天,再根据此时间进行推算,即可得出答案.
4.一辆汽车的速度是72千米/时,现有一块每小时慢20秒的表,用这块表计时,测得这辆汽车的速度是多少?(保留一位小数)
考点:时间与钟面.
分析:表比标准时间每小时慢20秒,则坏好钟间的速度比等于3600秒:3580秒.
解答:解:72×≈72.4(千米/时).
答:测得这辆汽车的速度约是72.4千米/时.
点评:考查了时间与钟面,一块手表或快或慢都会有些误差,所以手表指示的时刻并不一定是准确时刻.这类题目的变化很多,关键是抓住单位时间内的误差,然后根据某一时间段内含多少个单位时间,就可求出这一时间段内的误差.
5.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走得不正常,每个白天快分,每个夜间慢分.如果在10月1日清晨将挂钟对准,那么时间恰好快3分?
考点:时间与钟面.
分析:每经过一个昼夜(一个白天+一个夜晚),挂钟快的时间为:﹣=(分).恰好快3分,则要经过:3÷=18(天),
即:最早在10月19日清晨时挂钟时间恰好快3分.
解答:解:﹣=(分),
3÷=18(天),
10月1日清晨18天后是10月19日清晨.
答:那么10月19日清晨挂钟恰好快3分.
点评:根据挂钟受影响的规律,可求每天挂钟快的时间,然后求快3分钟需要多少时间,进而求解.
6.某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒.问:这块手表一昼夜比标准时间差多少秒?
考点:时间与钟面.
分析:一昼夜为24小时,闹钟每小时比标准时间快30秒,那么一昼夜快了了30×24=720秒=12分钟,所以闹钟一昼夜走了24.2小时,手表比市钟钟每小时慢30秒,所以手表比闹钟少走了30×24.2=726秒,而闹钟比标准时间快了720秒,726﹣720=6秒,所以表慢了,一昼夜相差6秒.
解答:解:(1)闹钟一昼夜走了:
30×24=720(秒),
720秒=0.2小时,
24+0.2=24.2(小时);
(2)手表24.2小时少走:30×23.8=726(秒).
在24小时内,闹钟比标准时间快了720秒,表比钟快了726秒,所以表慢了.
一昼夜相差:720﹣714=6(秒)
答:表慢了,一昼夜相差6秒.
点评:完成本题要注意都要和标准时间相比较.
7.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了20分钟.中午12点放学,小明回到家一看钟才11点整.假定小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分钟?
考点:时间与钟面.
分析:根据题意,先求出小明从离家到回家闹钟一共走的时间,再求出在校的时间及上学、放学路上用的时间,再求出离家的时间,那么闹钟停了的时间即可求出.
解答:解:小明从离家到回家闹钟一共走的时间:11:00﹣5:50=5(小时)10(分钟),
小明到学校是8点差20分,12点离开,在学校的时间是:12:00﹣7:40=4(小时)20(分钟),
小明上学、放学路上用的时间是:(5小时10分钟﹣4小时20分钟)÷2=25(分钟),
小明离家的时间是:7时40分钟﹣25分钟=7时15分钟,
闹钟停了的时间:7:15﹣5:50=1小时25分钟,
答:他家的闹钟停了1小时25分钟.
点评:解答此题的关键是,根据题中的时间关系,确定解答顺序,列式解答即可.
8.肖健家有一个闹钟,每小时比标准时间慢半分钟.有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分.这个闹钟将在标准时间的什么时刻响铃?
考点:时间与钟面.
分析:因为这个闹钟走得慢,所以响铃时间肯定在5点5(5分)后面.由题意可知,闹钟走59分相当于标准时间60分,所以闹钟走1分相当于标准时间60÷59=(分).从晚上8点到第二天早晨5点55分,共595分,闹钟走595(分)相当于标准时间的559×=600(分)=10(时).响铃时是标准时间的6点整.
解答:解:60÷59=(分),
559×=600(分)=10(时),
8+12+10﹣24=6时.
故这个闹钟将在标准时间的6时响铃.
点评:考查了时间与钟面,关键是得到不标准的闹钟走1分相当于标准时间60÷59=(分),本题属于竞赛题型,有一定的难度.
9.爷爷的老式时钟的时针与分针每隔66分重合一次.如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?
考点:时间与钟面.
分析:根据题意先求出时针与分针两次重合的时间间隔,再求出老式时钟每重合一次就比标准时间慢的时间,时钟24时时针和分针重合的次数,最后求出时针再次指示8点时,实际上的时间.
解答:解:时针与分针两次重合的时间间隔为:60÷(1﹣)=60×=(分),
老式时钟每重合一次就比标准时间慢:66﹣=(分),
我们观察从12点开始的24时.分针转24圈,时针转2圈,分针比时针多转22圈,
即22次追上时针,也就是说24时共慢的时间是:×22=12(分),
所以所求的时刻是:8点12分;
答:如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是8点12分.
点评:解答此题的关键是,弄清题意,确定解答顺序,列式解答即可.
10.小明家有两个旧挂钟,一个每天快20分,一个每天慢30分.现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?
考点:时间与钟面.
分析:由时钟的特点知道,每隔12时,时针与分针的位置重复出现.所以快钟和慢钟分别快或慢12时的整数倍时,将重新显示标准时间;
由此即可得出快钟多少天显示一次标准时间和慢钟多少天显示一次标准时间;它们天数的最小公倍数就是它们再次同时显示标准时间的天数.
解答:解:(60×12)÷20=36(天),即快钟每经过36天显示一次标准时间.
(60×12)÷30=24(天),即慢钟每经过24天显示一次标准时间.
因为[36,24]=72,由此即可得出经过72天两个挂钟同时再次显示标准时间.
答:至少要经过72天才能再次同时显示标准时间.
点评:根据时钟的特点,得出快钟和慢钟分别隔几天显示一次标准时间,是解决本题的关键.
11.一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?
考点:时间与钟面.
分析:(1)从条件可以知道,快钟和慢钟每小时相差(1+2)分,当两个钟相差(9﹣8)时,再求出快钟经过的时间,由此即可得出答案;
(2)因为两个钟是同时调准的.,所以当两个钟相差60分时,快钟经过的时间是(20÷1)时,所以是20时前将两个钟同时调准的,即此时的标准时间的20时之前调准的.
解答:解:(1)60÷(1+2),
=60÷3,
=20(时),
快钟20时比标准时间快了20分钟,
所以,此时的标准时间是:8点40分;
(2)因为两个钟是同时调准的,所以当两个钟相差60分时,快钟20÷1=20(时),
所以是20时前(即在8点40分的前20时),
12点40分将两个钟同时调准的;
答:此时的标准时间是8点40分,在12点40分将两个钟同时调准的.
点评:解答此题的关键是,根据快钟和慢钟每小时相差的时间,求出钟经过的时间,即可得出答案.
12.某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟(如图).当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?
考点:时间与钟面.
分析:根据题意先求出怪钟与标准钟的速度比,再根据题意,找出对应的量,解答即可.
解答:解:(1)怪钟与标准钟的路程比等于速度比为:10×100:24×60=100:144,
怪钟3点75分时,距5点100+25=125(分),
此时标准钟还有x分到中午12点,
则100:125=144:x,
x=180,
180分钟=3小时,
12﹣3=9(时),
所以此时为上午9时,
(2)实际时间下午5点24分时,标准钟走了5×60+24=324(分),
怪钟从5点起走了y分,则100:y=144:324,
y=225,
225=200+25=2(小时)25(分钟),
故怪钟显示为:7时25分,
答:当这只钟显示3点75分时,实际上是上午9时;实际时间下午5点24分时,这只怪钟显示7时25分.
点评:解答此题的关键是找出怪钟与标准钟的路程比等于速度比,再找出对应量,列式解答即可.
13.李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分.他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟.夜里11点下班,李叔叔回到家一看,钟才9点钟.如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?
考点:时间与钟面.
分析:本题可先据钟面上的时间计算出李叔叔从出门到回家共用了多少时间,然后再据已知条件分别求出他上班、路上所用时间后就求出他家的钟停了多长时间.
解答:解:钟从12点10分到9点共经过8时50分,这期间李叔叔从3时于到11时上了8时的班,
再减去早到的10分钟,李叔叔上、下班路上共用:8时50﹣8时﹣10分=40分;
则上下班各用:40÷2=20(分钟);
李叔叔到工厂时是2点50分,上班路上用了20分钟,所以出发时间是2点30分.
因为出发时钟停在12点10分,所以钟停了2时20分.
答:他家的钟停了2时20分.
点评:这道题看起来很“乱”,但我们透过钟面显示的时刻,计算出实际经过的时间,问题就清楚了.
篇7:小学四年级奥数应用题训练:植树问题
1、建筑工程队盖一栋楼,要在长90米,宽15米的地基上打桩,每隔3米打一根桩,这栋楼地基的四周要打多少根桩?
2、三年级402名同学到郊外春游,每2人排成一排,前后两名同学相隔1米,队伍每分钟走80米,要全部通过一座200米的大桥需要多少分钟?
3、一条马路两边共植树160棵,每相邻两棵树之间相隔8米,这条马路长多少米?
4、在一条长1500米的公路两旁种树,计划相邻的两棵树相隔6米,每侧两端各种一棵,一共需要多少棵树苗?
5、一座楼房,每上一层楼要走19个台阶,小强回家从一楼要走76个台阶。小强家住几楼?
6、一条马路长800米,沿路的两旁共有82盏路灯,每两盏路灯相距多少米?
7、一根木料16米,把它锯成4米长的一段,每锯下一段要3分钟。把这根木料全部锯完全要多少分钟?
8、一根钢管长12米,要把它锯成每3米一段需要15分钟,如果把它锯成每2米一段需要多少分钟?
9、两棵树之间相距220米。在这两棵树之间等距离补栽21棵树,从第1棵到第15棵的距离有多少米?
10、学校操场边有9棵杨树,准备在两棵杨树之间栽3棵柳树。这样学校操场边共有多少棵树?
篇8:小学四年级奥数应用题训练:植树问题
1、一条马路两边共植树160棵,每相邻两棵树之间相隔8米,这条马路长多少米?
2、在一条长1500米的公路两旁种树,计划相邻的两棵树相隔6米,每侧两端各种一棵,一共需要多少棵树苗?
3、一座楼房,每上一层楼要走19个台阶,小强回家从一楼要走76个台阶。小强家住几楼?
4、一条马路长800米,沿路的两旁共有82盏路灯,每两盏路灯相距多少米?
5、一根木料16米,把它距成4米长的一段,每锯下一段要3分钟。把这根木料全部锯完要多少分钟?
6、一根钢管长12米,要把它锯成每3米一段需要15分钟,如果把锯成每2米一段需要多少分钟?
7、两棵树之间相距220米。在这两棵树之间等距离补栽21棵树,从第1棵到第15棵的距离有多少米?
8、学校操场边有9棵杨树,准备在两棵杨树之栽3棵柳树。这样学校操场边共有多少棵树?
9、一个池塘周围长600米,池塘周围每隔4米种有一棵柳树,每两棵柳树中间又栽有一棵桃树,池塘周围一共栽了多少棵树?
10、一块正方形的地,每边有10棵树,每相邻两棵树之间相距20米。这块正方形地一周的长是多少米?
篇9:奥数经典应用题
奥数经典应用题汇总
1、一只手有5个手指,那么两个人共有多少个手指?
2、有4盆黄花、5盆红花,每盆都开6多花,一共开了几朵花?
3、二⑴班有男生28人,有女生24人,二⑵班比二⑴班多3人,二⑵班有多少人?
4、一根铁丝用去一半后,再用去剩下的一半,这时剩下9米,原来这根铁丝多长?
5、把一根木棒锯成8段,每锯一段要3分钟,一共要( )分钟锯完。
6、妈妈把18块糖分给笑笑和她的2个好朋友,平均每人分得多少颗?
7、某小学举行一次数学竞赛,试卷上共有10道题,每做对一题得10分,做错一题倒扣5分,小明共得了50分,他做对了几题?
8、有3个数,每次取2个数相加,和分别是26、23、21。这三个数分别是多少?
9、小张今年17岁,小玲今年20岁。当他们岁数和是59时,他们两人各是多少岁?
10、张大娘家养了一些鸡和兔,共有8个头,22条腿,问张大娘养了几只鸡?几只兔?
11、有同样大小的红、白、黑珠子共72个,按“一红三白四黑”的顺序排列,问这串珠子里有几个白珠子,第50个珠子是什么颜色的?
12、一条河堤长60米,要在河堤的两边种树,每隔5米种一棵,从头到尾一共要种多少棵
13、班同学做早操,全班排4行,每行人数相等,佳佳站在一行中前面数过去是第5个,从后面数过来是第1个,二(1)班一共有( )人。
14、一只蛤蟆掉在井里,井深8米,它白天爬上3米,夜里滑下2米,爬到井口要用( )天。
15、在一条长28米小路的一边种树,每隔4米种一棵,两头都要种,一共要种多少棵?
16、一道除法算式,除数是9,王平同学把被除数的'十位数字和个位数字看颠倒(diān dǎo)了,结果商得5,这道题正确的被除数是( )。
17、小明家养的母鸡只数是公鸡的5倍,母鸡比公鸡多20只。小明家养母鸡( )只,养公鸡( )只。
18、2只小篮球和4只小足球共卖50元,2只小篮球和7只小足球共卖77元,每只小篮球卖( )元,每只小足球卖( )元。
19、用2、3、4、5、6、7、8、15、17、18、19、20这十二个数编加、减、乘、除算式各一个,每个数只用一次。
20.一条大鲨鱼,尾长是身长的一半,头长是尾长的一半,已知头长3米,这条大鲨鱼全长多少米?
★ 奥数作文
★ 奥数试题
★ 学奥数心得体会
★ 奥数教学计划
★ 怎么学好奥数
四年级奥数行程应用题(集锦9篇)




