“枫风sama”通过精心收集,向本站投稿了8篇奥数专项训练应用题及答案之时间行程的问题,下面是小编整理后的奥数专项训练应用题及答案之时间行程的问题,欢迎您阅读分享借鉴,希望对您有所帮助。
- 目录
篇1:奥数专项训练应用题及答案之时间行程的问题
奥数专项训练应用题及答案之时间行程的问题
一、解答题(共13小题,满分0分)
1.钟敏家有一个闹钟,每小时比标准时间快2分钟.星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她帮助妈妈做饭.钟敏应当将闹钟的铃定在几点几分上?
2.小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟.小明的手表一天慢几分几秒?
3.有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?
4.一辆汽车的速度是72千米/时,现有一块每小时慢20秒的表,用这块表计时,测得这辆汽车的速度是多少?(保留一位小数)
5.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走得不正常,每个白天快分,每个夜间慢分.如果在10月1日清晨将挂钟对准,那么时间恰好快3分?
6.某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒.问:这块手表一昼夜比标准时间差多少秒?
7.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了20分钟.中午12点放学,小明回到家一看钟才11点整.假定小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分钟?
8.肖健家有一个闹钟,每小时比标准时间慢半分钟.有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分.这个闹钟将在标准时间的什么时刻响铃?
9.爷爷的老式时钟的时针与分针每隔66分重合一次.如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?
10.小明家有两个旧挂钟,一个每天快20分,一个每天慢30分.现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?
11.一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?
12.某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟(如图).当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?
13.李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分.他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟.夜里11点下班,李叔叔回到家一看,钟才9点钟.如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?
参考答案与试题解析
一、解答题(共13小题,满分0分)
1.钟敏家有一个闹钟,每小时比标准时间快2分钟.星期天早晨7点整时,钟敏对准了闹钟,然后定上铃,想让闹钟在11点30分闹铃,提醒她帮助妈妈做饭.钟敏应当将闹钟的铃定在几点几分上?
考点:时间与钟面.
分析:根据条件可知闹钟走62分钟,标准时间是60分钟,由此标准时间和闹钟的比是60:62,标准时间经过的时间是11:30﹣7:00,由此即可求出闹钟经过的时间,那问题即可解决.
解答:解:62÷60=,
11:30﹣7:00=4.5(小时),
4.5×=4.65(小时),
=4(小时)39(分钟),
7小时+4小时39分钟=11小时39分钟;
答:钟敏应当将闹钟的铃定在11小时39分钟.
点评:解答此题的关键是,找出标准时间和闹钟的时间的比,再根据经过的标准时间,即可求出闹钟经过的时间.
2.小明晚上8点将手表对准,到第二天下午4点发现手表慢了3分钟.小明的手表一天慢几分几秒?
考点:时间与钟面.
分析:根据题意知道,从晚上8点将手表对准,到第二天下午4点,共经过了[(12﹣8)+4+12]小时,由于在此时间里手表慢了3分钟,那经历24小时慢的时间即可求出.
解答:解:从晚上8点到第二天下午4点是:(12﹣8)+4+12=20(小时),
一天有24小时,
3÷(20÷24)=3×=3.6(分钟),
3.6分钟=3分36秒;
答:小明的手表一天慢3分36秒.
点评:解答此题的关键是,根据题意,找出对应量,列式解答即可.
3.有一个钟每小时快15秒,它在7月1日中午12点时准确,下一次准确的时间是什么时候?
考点:时间与钟面.
分析:根据每小时快15秒,那多长时间快半天即可求出,由此即可求出下一次准确的时间.
解答:解:12×3600÷15=2880(小时),
2880÷24=120(天),
又因为,31+31+30+30=122(天),
也就是两个月以后的今天,也就是说算到10月份再减去1.5天(因为是从7月1号中午12点开始计时,这时半天已经过去了),
所以下次准确对时间是在10.29号正午12:00.
答:下一次准确的时间是10.29号正午12:00.
点评:解答此题的关键是,根据题意求出多长时间快半天,再根据此时间进行推算,即可得出答案.
4.一辆汽车的速度是72千米/时,现有一块每小时慢20秒的表,用这块表计时,测得这辆汽车的速度是多少?(保留一位小数)
考点:时间与钟面.
分析:表比标准时间每小时慢20秒,则坏好钟间的速度比等于3600秒:3580秒.
解答:解:72×≈72.4(千米/时).
答:测得这辆汽车的速度约是72.4千米/时.
点评:考查了时间与钟面,一块手表或快或慢都会有些误差,所以手表指示的时刻并不一定是准确时刻.这类题目的变化很多,关键是抓住单位时间内的误差,然后根据某一时间段内含多少个单位时间,就可求出这一时间段内的误差.
5.高山气象站上白天和夜间的气温相差很大,挂钟受气温的影响走得不正常,每个白天快分,每个夜间慢分.如果在10月1日清晨将挂钟对准,那么时间恰好快3分?
考点:时间与钟面.
分析:每经过一个昼夜(一个白天+一个夜晚),挂钟快的时间为:﹣=(分).恰好快3分,则要经过:3÷=18(天),
即:最早在10月19日清晨时挂钟时间恰好快3分.
解答:解:﹣=(分),
3÷=18(天),
10月1日清晨18天后是10月19日清晨.
答:那么10月19日清晨挂钟恰好快3分.
点评:根据挂钟受影响的规律,可求每天挂钟快的时间,然后求快3分钟需要多少时间,进而求解.
6.某人有一块手表和一个闹钟,手表比闹钟每小时慢30秒,而闹钟比标准时间每小时快30秒.问:这块手表一昼夜比标准时间差多少秒?
考点:时间与钟面.
分析:一昼夜为24小时,闹钟每小时比标准时间快30秒,那么一昼夜快了了30×24=720秒=12分钟,所以闹钟一昼夜走了24.2小时,手表比市钟钟每小时慢30秒,所以手表比闹钟少走了30×24.2=726秒,而闹钟比标准时间快了720秒,726﹣720=6秒,所以表慢了,一昼夜相差6秒.
解答:解:(1)闹钟一昼夜走了:
30×24=720(秒),
720秒=0.2小时,
24+0.2=24.2(小时);
(2)手表24.2小时少走:30×23.8=726(秒).
在24小时内,闹钟比标准时间快了720秒,表比钟快了726秒,所以表慢了.
一昼夜相差:720﹣714=6(秒)
答:表慢了,一昼夜相差6秒.
点评:完成本题要注意都要和标准时间相比较.
7.小明上午8点要到学校上课,可是家里的闹钟早晨5点50分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了20分钟.中午12点放学,小明回到家一看钟才11点整.假定小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分钟?
考点:时间与钟面.
分析:根据题意,先求出小明从离家到回家闹钟一共走的时间,再求出在校的时间及上学、放学路上用的时间,再求出离家的时间,那么闹钟停了的时间即可求出.
解答:解:小明从离家到回家闹钟一共走的时间:11:00﹣5:50=5(小时)10(分钟),
小明到学校是8点差20分,12点离开,在学校的时间是:12:00﹣7:40=4(小时)20(分钟),
小明上学、放学路上用的时间是:(5小时10分钟﹣4小时20分钟)÷2=25(分钟),
小明离家的时间是:7时40分钟﹣25分钟=7时15分钟,
闹钟停了的时间:7:15﹣5:50=1小时25分钟,
答:他家的闹钟停了1小时25分钟.
点评:解答此题的关键是,根据题中的时间关系,确定解答顺序,列式解答即可.
8.肖健家有一个闹钟,每小时比标准时间慢半分钟.有一天晚上8点整时,肖健对准了闹钟,他想第二天早晨5点55分起床,于是他就将闹钟的铃定在了5点55分.这个闹钟将在标准时间的什么时刻响铃?
考点:时间与钟面.
分析:因为这个闹钟走得慢,所以响铃时间肯定在5点5(5分)后面.由题意可知,闹钟走59分相当于标准时间60分,所以闹钟走1分相当于标准时间60÷59=(分).从晚上8点到第二天早晨5点55分,共595分,闹钟走595(分)相当于标准时间的559×=600(分)=10(时).响铃时是标准时间的6点整.
解答:解:60÷59=(分),
559×=600(分)=10(时),
8+12+10﹣24=6时.
故这个闹钟将在标准时间的6时响铃.
点评:考查了时间与钟面,关键是得到不标准的闹钟走1分相当于标准时间60÷59=(分),本题属于竞赛题型,有一定的难度.
9.爷爷的老式时钟的时针与分针每隔66分重合一次.如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是几点几分?
考点:时间与钟面.
分析:根据题意先求出时针与分针两次重合的时间间隔,再求出老式时钟每重合一次就比标准时间慢的时间,时钟24时时针和分针重合的次数,最后求出时针再次指示8点时,实际上的时间.
解答:解:时针与分针两次重合的时间间隔为:60÷(1﹣)=60×=(分),
老式时钟每重合一次就比标准时间慢:66﹣=(分),
我们观察从12点开始的24时.分针转24圈,时针转2圈,分针比时针多转22圈,
即22次追上时针,也就是说24时共慢的时间是:×22=12(分),
所以所求的时刻是:8点12分;
答:如果早晨8点将钟对准,到第二天早晨时针再次指示8点时,实际上是8点12分.
点评:解答此题的关键是,弄清题意,确定解答顺序,列式解答即可.
10.小明家有两个旧挂钟,一个每天快20分,一个每天慢30分.现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?
考点:时间与钟面.
分析:由时钟的特点知道,每隔12时,时针与分针的位置重复出现.所以快钟和慢钟分别快或慢12时的整数倍时,将重新显示标准时间;
由此即可得出快钟多少天显示一次标准时间和慢钟多少天显示一次标准时间;它们天数的最小公倍数就是它们再次同时显示标准时间的天数.
解答:解:(60×12)÷20=36(天),即快钟每经过36天显示一次标准时间.
(60×12)÷30=24(天),即慢钟每经过24天显示一次标准时间.
因为[36,24]=72,由此即可得出经过72天两个挂钟同时再次显示标准时间.
答:至少要经过72天才能再次同时显示标准时间.
点评:根据时钟的特点,得出快钟和慢钟分别隔几天显示一次标准时间,是解决本题的关键.
11.一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?
考点:时间与钟面.
分析:(1)从条件可以知道,快钟和慢钟每小时相差(1+2)分,当两个钟相差(9﹣8)时,再求出快钟经过的时间,由此即可得出答案;
(2)因为两个钟是同时调准的.,所以当两个钟相差60分时,快钟经过的时间是(20÷1)时,所以是20时前将两个钟同时调准的,即此时的标准时间的20时之前调准的.
解答:解:(1)60÷(1+2),
=60÷3,
=20(时),
快钟20时比标准时间快了20分钟,
所以,此时的标准时间是:8点40分;
(2)因为两个钟是同时调准的,所以当两个钟相差60分时,快钟20÷1=20(时),
所以是20时前(即在8点40分的前20时),
12点40分将两个钟同时调准的;
答:此时的标准时间是8点40分,在12点40分将两个钟同时调准的.
点评:解答此题的关键是,根据快钟和慢钟每小时相差的时间,求出钟经过的时间,即可得出答案.
12.某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟(如图).当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?
考点:时间与钟面.
分析:根据题意先求出怪钟与标准钟的速度比,再根据题意,找出对应的量,解答即可.
解答:解:(1)怪钟与标准钟的路程比等于速度比为:10×100:24×60=100:144,
怪钟3点75分时,距5点100+25=125(分),
此时标准钟还有x分到中午12点,
则100:125=144:x,
x=180,
180分钟=3小时,
12﹣3=9(时),
所以此时为上午9时,
(2)实际时间下午5点24分时,标准钟走了5×60+24=324(分),
怪钟从5点起走了y分,则100:y=144:324,
y=225,
225=200+25=2(小时)25(分钟),
故怪钟显示为:7时25分,
答:当这只钟显示3点75分时,实际上是上午9时;实际时间下午5点24分时,这只怪钟显示7时25分.
点评:解答此题的关键是找出怪钟与标准钟的路程比等于速度比,再找出对应量,列式解答即可.
13.李叔叔下午要到工厂上3点的班,他估计快到上班的时间了,就到屋里去看钟,可是钟停在了12点10分.他赶快给钟上足发条,匆忙中忘了对表就上班去了,到工厂一看离上班时间还有10分钟.夜里11点下班,李叔叔回到家一看,钟才9点钟.如果李叔叔上、下班路上用的时间相同,那么他家的钟停了多长时间?
考点:时间与钟面.
分析:本题可先据钟面上的时间计算出李叔叔从出门到回家共用了多少时间,然后再据已知条件分别求出他上班、路上所用时间后就求出他家的钟停了多长时间.
解答:解:钟从12点10分到9点共经过8时50分,这期间李叔叔从3时于到11时上了8时的班,
再减去早到的10分钟,李叔叔上、下班路上共用:8时50﹣8时﹣10分=40分;
则上下班各用:40÷2=20(分钟);
李叔叔到工厂时是2点50分,上班路上用了20分钟,所以出发时间是2点30分.
因为出发时钟停在12点10分,所以钟停了2时20分.
答:他家的钟停了2时20分.
点评:这道题看起来很“乱”,但我们透过钟面显示的时刻,计算出实际经过的时间,问题就清楚了.
篇2:四年级奥数经典试题之行程问题
四年级奥数经典试题之行程问题
专题简析:
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2 小时后相遇。
练习一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的`速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了 500×10=5000米。
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。
练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?
篇3:六年级奥数简单行程训练题及答案
六年级奥数简单行程训练题及答案
【试题】甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的.时间多走米.
【答案】
分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米
解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:
(0.07+0.08)X=6,
0.15X=6,
X=40;
前一半比后一半时间多走:
(80-70)×40,
=10×40,
=400(米).
答:前一半比后一半的时间多走400米.
故答案为:400.
篇4:八年级奥数行程问题习题及答案
八年级奥数行程问题习题及答案
【题目1】从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?
【解答】
解法一:每小时行30千米,按照规定时间,就要多行30×15/60=7.5千米。每小时行20千米,按照规定时间,就要少行20×5/60=5/3千米。所以规定时间就是(7.5+5/3)÷(30-20)=11/12小时。距离是30×(11/12-15/60)=20千米。所以要提前5分钟到达,摩托车的速度是每小时行20÷(11/12-5/60)=24千米
解法二:速度比为30:20=3:2,所用时间比就是2:3。相差的15+5=20分钟,是第一种速度行驶时所用时间的1/2。第一种速度行驶所用时间为20÷1/2=40分钟。距离火车开车时间40+15=55分钟,路程为30×40/60=20千米。如果打算提前5分钟到,速度应是20÷(55-5)/60=24千米/小时。
解法三:速度比为30:20=3:2,所用时间比就是2:3。第一种速度所用的时间是(15+5)÷(3-2)×2=40分钟,如果要提前5分钟和第一种速度的`时间比是40:(40+15-5)=4:5,那么速度比就是5:4,那么此时摩托车的速度是每小时行30÷5/4=24千米
解法四:每小时行30千米所用的时间是(15+5)÷(30-20)×20=40分钟,如果要提前5分钟,需要的时间是40+15-5=50分钟,此时摩托车的速度是每小时行30×40/50=24千米
【题目2】B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
【解答】如果先追乙然后返回,时间是1÷(3-1)×2=1小时,再追甲后返回,时间是3÷(3-1)×2=3小时,共用去3+1=4小时,如果先追甲返回,时间是2÷(3-1)×2=2 小时,再追乙后返回,时间是3÷(3-1)×2=3小时,共用去2+3=5小时,先追乙时间最少。故先追更后出发的。
【题目3】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
【解答】
解法一:因为行完之后,甲比乙多行500米,就说明多休息500÷200=2……100,即2次。甲追乙的路程是500+100×2=700米,要追700米,甲需要走700÷(120-100)=35分,甲行35分钟需要休息35×120÷200-1=20分,所以共需35+20=55分。
解法二:跑停一次时间比:甲是200:120=5:3=15:9,乙是200:100=2:1=16:8,在24分钟里甲跑15分钟,乙跑16分钟,甲比乙多跑120×15-100×16=200米,500-200×2=100米,100÷(120-20)=5分钟,甲跑5分钟只需要休息两分钟,共用时间24×2+5+2=55分钟
【题目4】甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还要1小时到达B地,此时甲、乙共行了35千米.求AB两地的路程.
【解答】甲行3小时的路程,乙行3+1=4小时,说明甲乙的速度比是4:3。AB两地的距离就是甲行的。所以是35÷(4+3)×4=20千米。
篇5:盈亏问题专项训练小学奥数题及答案
盈亏问题专项训练小学奥数题及答案
1、某商店进了定价分别为210元、90元、60元的.羊毛衫共47件,卖完后共得6360元。已知定价为90元的羊毛衫件数是定价为60元羊毛衫件数的2倍。求,三种羊毛衫各进了多少件?
2、从甲城往乙城运输78吨贷物,载重量为5吨的大卡车运一趟,运费为110元;载重量为2吨的小卡车运一趟,运费为50元。要使运费最省,运送这批贷物需要大、小卡车各多少辆?运费为多少?
3、有一个三位数,个位数字是十位数字与1.5相乘积,十位数字是百位数字除以2的商,个位、十位、百位三个数字的和是18。问,这个三位数是多少?
4、学校举行田径运动会,小赵和小王参加100米赛跑。已知小赵从开始到终点是以每秒2米的速度跑。小王第一秒跑1米,以后每秒都比前一秒多跑0.1米。问,他们两人谁能获胜?为什么?请说明理由。
篇6:奥数应用题试题及答案:工程问题
奥数应用题试题及答案:工程问题
在一条路上,每隔50千米就有一个货栈,每个货栈存放货物的重量如图所示,现在要将这些货物存入同一个货栈里,已知每吨货物运输1千米需要2元.那么,至少需要多少元运费?
分析:根据常识可知,将货物往两端运总运输成本一般比往中间运高,可先将两端的两个仓库排排除,又②仓库中的.货物最多,所以从两端向②运比较节省运费.
解答:解:将货物往两端运总运输成本一般比往中间运高,而②仓库中的货物最多,
所以从两端向②运比较节省运费.
20×50×2×2+20×50×2+20×50×2
=4000+4000
=8000(元)
答:至少需要8000元运费.
点评:先根据距离及每个仓库中货物的吨数排除三个仓库后,根据条件中所给的数据进行分析比较是完成本题的关键.
篇7:小学五年级奥数应用题训练:倍数问题
1、今年爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍,今年小明多少岁?
2、原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的6倍,食堂里原来存的大米、面粉各是多少千克?
3、三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱,三堆货物各多少箱?
4、甲、乙、丙三数之和是224,如果甲是乙的3倍,丙是甲的4倍,求甲、乙、丙三数各是多少?
5、甲有邮票42张,乙有邮票48张,每次甲给乙2张,而乙又给甲4张,这样交换多少次后,甲的邮票张数是乙的2倍?
6、甲仓存有大米650袋,乙仓存有大米400袋,每天从甲乙仓各运出50袋,多少天后甲仓大米是乙仓的6倍?
7、某工厂共有工人560人,其中男工比女工的3倍少40人,男工和女工各有多少人?
8、三种水果共有132个,已知苹果的个数比梨的3倍少6个,梨的个数比橘子的3倍多2个,三种水果各有多少个?
9、养鸡场新买来100只小鸡,其中母鸡只数的4倍是公鸡只数的3倍多120只。求买来母鸡、公鸡各有多少只?
10、体育室有篮球和排球共65个,已知篮球个数的3倍比排球个数的一半多20个,两种球各有多少个?
篇8:小学五年级奥数应用题训练:倍数问题
1、父亲年龄是女儿年龄的4倍,3年前父女年龄之和是49岁,父女现在各为多少岁?
2、父子今年共100岁,20年前,父亲年龄是儿子的3倍,今年两人各多少岁?
3、今年妈妈47岁,小刚20岁,几年前妈妈年龄是小刚的4倍?
4、女儿今年6岁,妈妈今年36岁,几年后妈妈的年龄是女儿的4倍?
5、一家三口人,年龄之和是74岁,妈妈比爸爸小2岁,妈妈年龄是儿子年龄的4倍,求三人各有多少岁?
6、两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米?
7、一筐梨和一筐苹果的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍,原来两筐一共有多少个?
8、幼儿园买来的苹果的个数是梨的2倍,如果每组领3个梨和4个苹果,结果梨正好分完,苹果还剩16个。两种水果原来各有多少个?
9、甲粮库的存粮是乙粮库存粮的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出粮食30吨。若干天后,乙粮库的粮食全部运完,而甲粮库还有80吨。甲、乙粮库的粮食原来各有多少吨?
10、兄弟两人原有相同的钱数,哥哥买了5本书,平均每本8.4元,弟弟买了3支笔,每支1.2元;现在弟弟的钱数是哥哥的3倍。兄弟两人原来各有多少元?
★ 小学奥数题及答案
奥数专项训练应用题及答案之时间行程的问题(整理8篇)




