【导语】“dgaf”通过精心收集,向本站投稿了8篇小学奥数试题及答案参考,下面是小编为大家带来的小学奥数试题及答案参考,希望大家能够喜欢!
- 目录
篇1:小学奥数试题及答案参考
小学奥数试题及答案参考
在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.
(1)请写出只有3种这样的表示方法的最小自然数.
(2)请写出只有6种这样的表示方法的最小自然数.
分析:(1)关于某整数,它的“奇数的约数的个数减1“,就是用连续的.整数的和的形式来表达种数;根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;
(2)有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:
364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40.
解答:解:根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);
有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;
根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),
有连续的2,3、6、9、10、27个数相加:
364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40
篇2:小学奥数试题及答案
小学奥数试题及答案
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的.价格把房子卖出.这样他一共获利10.5万元.这套房子原标价万元.
考点:百分数的实际应用.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利10.5万元,得出10.5万元对应的百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:10.5÷(1+30%-95%),
=10.5÷35%,
=30(万元),
答:这套房子原标价30万元;
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出10.5对应的百分数,列式解答即可.
篇3:小学五年级奥数试题及答案
小学五年级奥数试题及答案
小学五年级奥数试题及答案
一、填空题
1.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.
2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人.
3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.
4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.
5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分发一次,第一次同时发车以后,_____分又同时发第二次车.
6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.
7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.
8. 能被3、7、8、11四个数同时整除的最大六位数是_____.
9. 把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1, 那么至少要分成_____组.
10. 210与330的最小公倍数是最大公约数的_____倍.
二、解答题
11.公共汽车总站有三条线路,第一条每8分发一辆车,第二条每10分发一辆车,第三条每16分发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.
12. 甲乙两数的最小公倍数除以它们的最大公约数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?
13. 用、、分别去除某一个分数,所得的商都是整数.这个分数最小是几?
14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:
(1)说的不对的两位同学,他们的编号是哪两个连续自然数?
(2)如果告诉你,1号写的数是五位数,请找出这个数.
参考答案:
1、9 若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完.由此可知小朋友人数是18与27的最大公约数.所以最多有9个小朋友.
2、36 根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数. 所以,这个大班的小朋友最多有36人.
3、56 所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.
先求14与16的最小公倍数.
2 16 14
8 7
故14与16的最小公倍数是287=112.
因为正方形的`边长最小为112厘米,所以最少需要用这样的木板
=78=56(块)
4、5292 与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块
=142118=5292(块)
[注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广.将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一.希望引起小朋友们注意.
5、90
依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15和10的最小公倍数.
因为3,5,9,15和10的最小公倍数是90,所以从第一次同时发车后90分又同时发第二次车.
6、5
依题意得
花生总粒数=12第一群猴子只数
=15第二群猴子只数
=20第三群猴子只数
由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么
第一群猴子只数是5,10,15,……
第二群猴子只数是4,8,12,……
根据题目要求,有相同质因数的数不能分在一组,26=213,91=713,143=1113,所以,所分组数不会小于3.下面给出一种分组方案:
(1)26,33,35;(2)34,91;(3)63,85,143.
因此,至少要分成3组.
[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=35,21=37,35=57,3,5,7各出现两次,而这三个数必须分成三组,而不是两组.
除了上述分法之外,还有多种分组法,下面再给出三种:
(1)26,35;33,85,91;34,63,143.
(2)85,143,63;26,33,35;34,91.
(3)26,85,63;91,34,33;143,35.
10、77
根据“甲乙的最小公倍数甲乙的最大公约数=甲数乙数”,将210330分解质因数,再进行组合有
210330=235723511
=223252711
=(235)(235711)
因此,它们的最小公倍数是最大公约数的711=77(倍).
11、根据题意,先求出8,10,16的最小公倍数是80,即从第一次三车同时发出后,每隔80分又同时发车.
从早上6:00至20:00共14小时,求出其中包含多少个80分
601480=10…40分
由此可知,20:00前40分,即19:20为最后一次三车同时发车的时刻.
12、甲乙两数分别除以它们的最大公约数,所得的两个商是互质数.而这两个互质数的乘积,恰好是甲乙两数的最小公倍数除以它们的最大公约数所得的商——12.这一结论的根据是:
(我们以“约”代表两数的最大公约数,以“倍”代表两数的最小公倍数)
甲数乙数=倍约
=,所以:
=,=12
将12变成互质的两个数的乘积:
①12=43,②12=112
先看①,说明甲乙两数:一个是它们最大公约数的4倍,一个是它们最大公约数的3倍.
甲乙两数的差除以上述互质的两数(即4和3)之差,所得的商,即甲乙两数的最大公约数.
18(4-3)=18
甲乙两数,一个是:183=54,另一个是:184=72.
再看②,18(12-1)=,不符合题意,舍去.
13、依题意,设所求最小分数为,则
=a =b =c
即 =a =b =c
其中a,b,c为整数.
因为是最小值,且a,b,c是整数,所以M是5,15,21的最小公倍数,N是28,56,20的最大公约数,因此,符合条件的最小分数: ==
14、(1)根据2号~15号同学所述结论,将合数4,6,…,15分解质因数后,由1号同学验证结果,进行分析推理得出问题的结论.
4=22,6=23,8=23,9=32,10=25,12=223,14=27,15=35
由此不难断定说得不对的两个同学的编号是8与9两个连续自然数(可逐次排除,只有8与9满足要求).
(2)1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是
223571113=60060
因为60060是一位五位数,而这12个数的其他公倍数均不是五位数,所以1号同学写的五位数是60060.
第三群猴子只数是3,6,9,……
所以,三群猴子的总只数是12,24,36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是5粒.
7、421
依题意知,这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.
8、999768
由题意知,最大的六位数是3,7,8,11的公倍数,而3,7,8,11的最小公倍数是1848.
因为9999991848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.
9、3
篇4:小学四年级奥数试题及答案
_____年级 _____班 姓名_____ 得分_____
1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.
2. 54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠_____米.
3. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.
4. 某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.
5. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.
6. 一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成.
7. 某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件.
8. 4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨.现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完.
9. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.
10. 8个人10天修路840米,照这样算,20人修4200米,要_____天.
解答题:
11. 某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?
12. 光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?
13. 光明小学有50个学生帮学校搬砖,要搬2000块,4次搬了一半,照这样算,再增加50个学生,还要几次运完?
14. 一根木料,锯成2段,要3分钟,如果锯成6段要多少分钟?
---------------答 案----------------------
1. 10人.
解: (39600-13200)÷(13200÷30÷10×15)-30=10(人).
2. 1296米.
解: 1944÷54÷12×(18+54)×(12÷2)=1296(米).
3. 28人.
解: (28×25-28×5)÷(25-5-10)-28=28(人).
4. 16天.
解: (15×16-5×16)÷(16-6)=16(天).
5. 12天.
解: 2520÷(1620÷9÷12×14)=12(天).
6. 12天.
解: 15×4×18÷[(15+3)×(4+1)]=12(天).
7. 1200件.
解: 720÷18÷2×20×3=1200(件).
8. 14次.
解: 77÷[(80÷4÷5)+(36÷3÷8)]=14(次).
9. 16天.
解: (12000+12000×0.28)÷(12000÷15+12000÷15× )=16(天).
10. 20天.
解: 4200÷(840÷10÷8×20)=20(天).
11. 先求出1台机器1小时排水的吨数: 1260÷7÷8÷15=1.5(吨).
再求出1台机器每天排12小时排足14天的水的吨数: 1.5×12×14=252(吨).
最后求出所需要的台数: 7560÷252=30(台).
综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台).
12. 先求出每个人每天做的个数: 900÷15÷3=20(个).
再求出共做的个数: 20×10×8=1600(个).
最后求出增加的个数: 1600-900=700(个).
13. 先求出每个学生每次运的砖数: 2000× ÷4÷50=5(块).
再求出现在的学生一次过运的砖数: (50+50)×5=500(块).
最后求出还要运的次数: 2000× ÷500=2(次).
简便方法: 4÷[(50+50)÷50]=2(次).
14. 先求出锯一下用的时间: 3÷(2-1)=1.5(分钟).
再求出锯6段用的次数: 6-1=5(次).
最后求出共用的时间: 1.5×5=7.5(分钟).
篇5:小学四年级奥数试题及答案
地理老师在黑板上挂了一张世界地图,并给五大洲的每一个洲都标上一个代号,让学生认出五个洲,五个学生分别回答如下
甲:3号是欧洲,2号是美洲;
乙:4号是亚洲,2号是大洋洲;
丙:1号是亚洲,5号是非洲;
丁:4号是非洲,3号是大洋洲;
戊:2号是欧洲,5号是美洲。
老师说他们每人都只说对了一半,1号_______,2号_______,3号_______,4号________,5号_________。
答案与解析:1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
苏教版小学四年级奥数题及答案《回答问题》:假设甲说的前半句是对的,则3号是欧洲,由此推出丁说的3号是大洋洲是错误的。由于每个人都只说对了一半,可知丁说的4号是非洲是对的,由此推出乙说的4号是亚洲是错的,2号是大洋洲是对的。又可知戊说的2号是欧洲是错的,5号是美洲是对的,由此推出丙说的5号是非洲是错的,1号是亚洲是对的,最后得到正确的结论是:1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
篇6:小学四年级奥数试题及答案
正方体盒子的每个面上都写有一个自然数,并且相对两个面所写的两数之和都相等.若18对面所写的是质数a;14对面所写的是质数b;35对面所写的质数是c.试求a+b+c的值.
考点:奇偶性问题;质数与合数问题.
分析:根据题目已知18+a=14+b=35+c.18和14是偶数,而35是奇数,除2之外所以的质数都是奇数,因为18+a和14+b的和肯定是奇数,所以35+c也只能是奇数,所以a,b肯定是奇质数,不会是唯一的偶质数2,那么c就只能是偶质数2了,知道c=2,也可以知道b=23,a=19.最后a+b+c=44.
解答:解:已知18+a=14+b=35+c.
a,b肯定是奇质数,不会是唯一的偶质数2,那么c就只能是偶质数2;
35+c=35+2=37;
18+a=37,
a=37-18=19;
14+b=37,
b=37-14=23;
a+b+c=19+23+2=44.
点评:根据质数的奇偶性的特点,以及奇数+偶数=奇数的特点,找出c是偶数质数2,再进一步求解.
篇7: 小学五年级奥数试题及答案
A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行行42千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,这样一直飞,燕子飞了多少千米,两车才能相遇?
考点:相遇问题.
分析:要求燕子飞了多少千米,就要知道燕子飞行所用的时间和燕子的速度,燕子的速度是每小时50千米,关键的问题是求出燕子飞行所用的时间,燕子飞行的时间就是甲乙两车的相遇时间,甲乙两车的相遇时间是400÷(38+42)=5(小时),求燕子飞了多少千米,列式为50×5,计算即可.
解答:解:燕子飞行的时间就是甲乙两车的相遇时间,即:
400÷(38+42),
=400÷80,
=5(小时);
燕子飞行的'距离:
50×5=250(千米);
答:燕子飞了250千米两车才能相遇.
点评:本题解题的关键是要知道燕子飞行的时间就是甲乙两车的相遇时间,同时考查了下列关系式:总路程÷速度和=相遇时间、速度×时间=路程.
篇8: 小学五年级奥数试题及答案
1.将1,2,3这3个数字选出1个、2个、3个按任意次序排列出来可得到不同的一位数、二位数、三位数,请将其中的质数都写出来.
考点:合数与质数.
分析:按要求写出所有一位数,二位数,三位数,然后选出质数即可.
解答:解:一位数为:1,2,3,
二位数为:12,13,21,23,31,32,
三位数为:123,132,213,231,312,321,
其中质数为2,3,13,23,31.
点评:明确质数的含义:除了1和它本身以外,不含其它因数的数是质数;是解答此题的关键.
★ 小学奥数试题
★ 奥数试题
★ 小学奥数题及答案
小学奥数试题及答案参考(共8篇)




