【导语】“rao258”通过精心收集,向本站投稿了8篇珠子问题的奥数练习题及答案,下面小编给大家整理后的珠子问题的奥数练习题及答案,欢迎阅读与借鉴!
- 目录
篇1:珠子问题的奥数练习题及答案
关于珠子问题的奥数练习题及答案
五年级奥数练习题珠子问题
30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、……的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.
答案与解析:
这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59粒的时候会是黑珠子,所以至少要跳7次.
篇2:六年级相遇问题奥数练习题及答案
六年级相遇问题奥数练习题及答案
甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
答案与解析:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
篇3:小学奥数盈不足问题专项练习题及答案
小学奥数盈不足问题专项练习题及答案
现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。而相对于这门课程,一般学校的数学课应该称为“普通基础数学”。特此为大家准备了“奥数应用题练习及解析:盈不足问题”。
1.学校园林科有一批树苗,交给若干名学生去栽,一次一次往下分,每次分一棵,最后剩下12棵,不够分了.如果再拿来8棵,那么每个学生正好栽10棵.求参加栽树的学生有多少人,这批树苗共多少棵?
考点:盈亏问题.1923992
分析:最后剩下12棵,不够分了,可知,学生数应大于12,再拿来8棵正好平均分完(每人10棵)由于8<12,所以可知学生数应为:12+8=20(人);又再拿来8棵,那么每个学生正好栽10棵,由此可得树苗应为10×20﹣8=192(棵).
解答:解:人数为:12+8=20(人);
树苗的棵数为:10×20﹣8=192(棵).
答:参加栽树的学生有20人,这批树苗共192棵.
点评:这是一个盈余问题,主要是先根据余下的树苗及需要补进的树苗求出人数是多少就好解答了.
2.小春读一本小说,若每天读35页,则读完全书比规定时间迟一天;若每天读40页,则最后一天要少读5页,如果他每天读39页,最后一天应读多少页才按规定时间读完?
考点:盈亏问题.1923992
分析:因为书的总页数不变,若设规定x天读完,书的页数为35×(x+1)和40x﹣5;据此可列式计算.
解答:解:设规定x天读完,
35×(x+1)=40x﹣5,
35x+35=40x﹣5,
5x=40,
x=8;
书的总页数为:40x﹣5=40×8﹣5=315(页);
最后一天应读:315﹣(8﹣1)×39
=315﹣273
=42(页);
答:最后一天应读42页才按规定时间读完.
点评:此题依据书的.页数不变,列方程即可解决.
3.一只青蛙从井底往井口跳,若每天跳3米,则比原定时间迟2天,若每天跳5米,则比原定时间早2天.井口到井底有多少米?
考点:盈亏问题.1923992
分析:两种情况每天跳的米数相差5﹣3=2米,跳的距离相差(3×2+5×2)=16米,进而得出原定时间为:16÷2=8天,进而根据“若每天跳3米,则比原定时间迟2天”,用3×(8+2)计算即可井口到井底的深度.
解答:解:(3×2+5×2)÷(5﹣3),
=16÷2,
=8(天),
(8+2)×3=30(米);
答:井口到井底有30米.
点评:解答此题应根据盈亏问题解法求出原定时间,进而根据题意,进行解答得出结论.
4.王师傅加工一批零件,若每天加工250个,则比原定计划迟2天;若平均每天加工300个零件,正好按原定时间完成.求这批零件的总个数?
考点:盈亏问题.1923992
分析:由题意得:若每天加工250个,则比原定计划迟2天,即还有250×2=500个零件没有做;每天多做(300﹣250)=50个,正好按原定时间完成,则原定计划用500÷50=10天;进而根据“工效×工作时间=工作总量”进行解答即可.
解答:解:(250×2)÷(300﹣250)=10(天),
10×300=3000(个);
或250×(10+2)=3000(个);
答:求这批零件共有3000个.
点评:解答此题应认真分析题中的数量间的关系,进而根据工作总量、工作效率和工作时间的关系进行解答即可.
篇4:六年级奥数练习题及答案
有A,B,C三个数,A加B等于252,B加C等于197,C加A等于149,求这三个数.
解:
从B+C=197与A+C=149,就知道B与A的差是197-149,题目又告诉我们,B与A之和是252.因此
B=(252+197-149)÷2=150,
A=252-150=102,
C=149-102=47.
答:A,B,C三数分别是102,150,47.
注:还有一种更简单的方法
(A+B)+(B+C)+(C+A)=2×(A+B+C).
上面式子说明,三数相加再除以2,就是三数之和.
A+B+C=(252+197+149)÷2=299.因此
C=299-252=47,
B=299-149=150,
A=299-197=102.
篇5:六年级奥数练习题及答案
甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
答案与解析:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
篇6:六年级奥数练习题及答案
甲、乙两人分别以每小时6千米和每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是10千米时,他们走了________小时.
答案与解析:
本题有两种情况,一种是甲、乙两人还未相遇过,此时两人一共走了30-10=20(千米),另一种是甲、乙两人相遇过后继续向前走到相距10千米,一共走了30+10=40(千米),所以有两种答案:(30-10)(6+4)=2(小时);或(30+10)(6+4)=4(小时).
篇7:六年级奥数练习题及答案
1、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
答案与解析:
把路程当作1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
2、分母不大于60,分子小于6的最简真分数有____个?
答案与解析:
分类讨论:
(1)分子是1,分母是2~60的最简真分数有59个:
(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);
(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);
(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);
(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个)。
这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个)。
1、某个体商人以年利息14%的利率借别人4500元,第一年末偿还2130元,第二年以某种货物80件偿还一部分,第三年还2736元结清,他第二年末还债的货物每件价值多少元?
2、小明于今年七月一日在银行存了活期储蓄100元,如果年利率是1。98%,到明年七月一日,小明可以得到多少利息?
3、买了8000元的国家建设债卷,定期3年,到期他取回本息一共10284元,这种建设债卷的年利率是多少?
答案与解析:
1、解:根据“总利息=本金×利率×时间”
第一年末的本利和:4500+4500×14%×1=5130(元)
第二年起计息的本金:5130-2130=3000(元)
第二年末的本利和:3000+3000×14%×1=3420(元)
第三年的本利和为2736元,
故第三年初的本金为:2736÷(1+14%)=2736÷1.14=2400(元)
第二年末已还款的金额为3420-2400=1020(元)
每件货物的单价为1020÷80=12.75(元)
答:他第二年末还债的货物每件价值12.75元
2、解:1000×1.98%×1×(1-20%)=15.84(元)
答:小明可以得到15.84元利息
3、解:设年利率为X%
(1)(单利)
8000+8000×X%×3=10284
X%=9.52%
(2)(复利)
8000(1+X%)3=10284
X%=9.52%
答:这种建设债卷利率是9.52%
1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?
答案与解析:
人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到
3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183
答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?
答案与解析:
①做正方形的另一条对角线。得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的'面积是:
8÷2=4(直角边)
4×4÷2=8(平方米)
③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)
1、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。
答案与解析:
这个题目和第8题比较近似。但比第8题复杂些!
大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。
说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。
既然后来两人都没有休息,小轿车又比大轿车早到4分钟。
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上。
所以此时的时刻是11时05分。
2、客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。
答案与解析:
第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。那么有120-20=100千米即为甲、乙的全长。
篇8:四年级奥数练习题及答案
树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?
答案与解析:
解析:倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.
解:①现在三棵树上各有鸟多少只?48÷3=16(只)
②第一棵树上原有鸟只数.16+8=24(只)
③第二棵树上原有鸟只数.16+6—8=14(只)
④第三棵树上原有鸟只数.16—6=10(只)
答:第一、二、三棵树上原来各落鸟24只、14只和10只.
★ 小学奥数题及答案
珠子问题的奥数练习题及答案(共8篇)




