证明正方形方法定义

时间:2023-04-22 03:39:49 作者:发梦冲 综合材料 收藏本文 下载本文

【导语】“发梦冲”通过精心收集,向本站投稿了8篇证明正方形方法定义,今天小编就给大家整理后的证明正方形方法定义,希望对大家的工作和学习有所帮助,欢迎阅读!

篇1:证明正方形方法定义

①对边平行且相等。

②四条边都相等。

③四个角都是直角。

④两条对角线相等,互相垂直平分,且平分每组对角。

⑤正方形是轴对称图形,也是中心对称图形。

周长:正方形的周长等于它的边长的4倍。若正方形的边长为a,周长为C,那么C=4a。

例:一个正方形的边长为4厘米,求这个正方形的周长。

解:C=4a=4×4=16(厘米)。

已知正方形的边长为a,对角线长为d,则正方形的面积 。

篇2:证明正方形方法定义

1、对角线相等的菱形是正方形。

2、有一个角为直角的菱形是正方形。

3、对角线互相垂直的矩形是正方形。

4、一组邻边相等的矩形是正方形。

5、一组邻边相等且有一个角是直角的平行四边形是正方形。

6、对角线互相垂直且相等的平行四边形是正方形。

7、对角线相等且互相垂直平分的四边形是正方形。

8、一组邻边相等,有三个角是直角的四边形是正方形。

9、既是菱形又是矩形的四边形是正方形。

(1)特殊性质,正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

(2)其他性质1,正方形具有平行四边形、菱形、矩形的一切性质与特性。

(3)其他性质2,在正方形里面画一个最大的圆(正方形的内切圆),该圆的面积约是正方形面积的78.5%[4分之π]; 完全覆盖正方形的最小的圆(正方形的外接圆)面积大约是正方形面积的157%[2分之π]。

(4)其他性质3, 正方形是特殊的矩形,正方形是特殊的菱形。

完美正方形是把正方形分割为若干个边长不等的小正方形。如果其中任何一部分小正方形都无法构成一个矩形或正方形,则称为简单完美正方形,否则称为复合完美正方形。

篇3:证明正方形方法定义

1、对角线互相垂直平分且相等的四边形是正方形。

2、邻边相等且有一个内角是直角的平行四边形是正方形。

3、有一组邻边相等的矩形是正方形 [3] 。

4、有一个内角是直角的菱形是正方形。

5、对角线相等的菱形是正方形。

6、对角线互相垂直的矩形是正方形。

7、有三个内角为直角且有一组邻边相等的四边形是正方形。

判别正方形的一般顺序:先说明它是平行四边形;再说明它是菱形(或矩形);最后说明它是矩形(或菱形)。

一个角为直角,并且一组邻边相等的平行四边形,叫做正方形。如1所示的平行四边形ABCD中,∠A为直角,AB=BC,那么平行四边形ABCD就是正方形。

因为正方形是平行四边形,也是矩形,又是菱形,所以它具有平行四边形、矩形、菱形的一切性质 。

篇4:证明四边形是正方形定义

①对边平行且相等。

②四条边都相等。

③四个角都是直角。

④两条对角线相等,互相垂直平分,且平分每组对角。

⑤正方形是轴对称图形,也是中心对称图形。

周长:正方形的周长等于它的边长的4倍。若正方形的边长为a,周长为C,那么C=4a。

例:一个正方形的边长为4厘米,求这个正方形的周长。

解:C=4a=4×4=16(厘米)。

面积:已知正方形的边长为a,对角线长为d,则正方形的面积

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形

3.一组对边平行且相等的四边形是平行四边形

4.两组对角分别相等的四边形是平行四边形

5.一组对边相等,一组对角相等的四边形是平行四边形

矩形性质:

1.矩形的四个角都是直角

2.矩形的对角线相等且互相平分

3.对边相等且平行

4.矩形所在平面内任一点到其两对角线端点的距离的平方和相等

5.矩形是轴对称图形,对称轴是任何一组对边中点的连线

矩形判定:

1.有一个角是直角的平行四边形是矩形

2.对角线相等的平行四边形是矩形

3.有三个角是直角的四边形是矩形

4.四个内角都相等的四边形为矩形

5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形

6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形

依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。

篇5:证明四边形是正方形定义

边:两组对边分别平行;四条边都相等;相邻边互相垂直

内角:四个角都是90°;

对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.

判定:

1:对角线相等的菱形是正方形

2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形

3:四边相等,有三个角是直角的四边形是正方形

4:一组邻边相等的矩形是正方形

5:一组邻边相等且有一个角是直角的平行四边形是正方形

6:四边均相等,对角线互相垂直平分且相等的平面四边形

依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.正方形的中点四边形是正方形.

篇6:极限 定义证明

极限 定义证明

极限 定义证明

趋近于正无穷,根号x分之sinx等于0

x趋近于负1/2,2x加1分之1减4x的平方等于2

这两个用函数极限定义怎么证明?

x趋近于正无穷,根号x分之sinx等于0

证明:对于任意给定的ξ>0,要使不等式

|sinx/√x-0|=|sinx/√x|<ξ成立,只需要

|sinx/√x|^2<ξ^2,即sinx^2/x<ξ^2(∵x→+∞),则x>sinx^2/ξ^2,

∵|sinx| ≤1∴只需不等式x>1/ξ^2成立,

所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|<ξ成立,

同函数极限的定义可得x→+∞时,sinx/√x极限为0.

x趋近于负1/2,2x加1分之1减4x的平方等于2

证明:对于任意给定的ξ>0,要使不等式

|1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|<ξ成立,只

需要0<|x+1/2|<ξ/2成立.所以取δ=ξ/2,则当0<|x+1/2|<δ时,必有

|1-4x^2/2x+1-2|=|2x+1|<ξ,

由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2.

注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0.

记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)

注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)

同理,存在Ni,当x>Ni时,0<=fi(x)

取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n

所以a/M<=[f1(x)^n+...+fm(x)^n]^(1/n)

对n取极限,所以a/M<=g(x)N时成立;

令x趋于正无穷,

a/M<=下极限g(x)<=上极限g(x)<=b;

注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。

令M趋于正无穷,b趋于a;

有a<=下极限g(x)<=上极限g(x)<=a;

这表明limg(x)=a;

证毕;

证明有点古怪是为了把a=0的情况也包含进去。

还有个看起来简单些的方法

记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;

g(x)=max{f1(x),....fm(x)};

然后求极限就能得到limg(x)=max{a1,...am}。

其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。

有种简单点的方法,就是

max{a,b}=|a+b|/2+|a-b|/2 从而为简单代数式。

多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式,

故极限可以放进去。

2

一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的'直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

2

篇7:正方形的定义和特征教学反思

正方形的定义和特征教学反思

踏入教坛一年多,接触新课程也有一年多的时间,这一年多来,虽然每一节课都精心设计,但上完课后总有很多遗憾,崔我反思。

《正方形的定义和特征》这节课的引入有两方面。第一,让学生进行接力赛,引导学生从边、角、对角线和对称性说出矩形和菱形的特征;第二,让学生观察身边的事物,找出正方形的东西出来。

“接力赛”调动了学生的好胜心,“找正方形的例子”调动的学生的好奇心。课堂的气氛一下子活跃了起来。看来这样的情景创设使枯燥乏味的数学变得既有趣又有用,从而吸引学生积极的参与和主动的学习,使学生体味到数学的趣味。能够调动学生的好奇心和好胜心,引入还算成功。回想一下,假如在“接力赛”中,能画出图形,让学生根据图形说出矩形和菱形的特征,这样能培养学生的数学语言的表达能力,岂不更好?

接下来进入主题:我让学生动手做两个实验,并从实验中寻找正方形的定义。实验一,让学生利用手中已有的可以活动的菱形模型变成一个正方形;实验二,利用手中已有的矩形用最快的方法剪(画)出一个正方形。这一下子学生的学习热情更加高,对于实验一,由于受到前面学习习近平行四边形变矩形的启发,几乎全班的同学都能自己动手完成;对于实验二,学生的剪法更是出乎我的意料,有的用尺子量了之后剪出,有的用对折的方法剪出,甚至有的模仿前面剪菱形的方法剪出……实验完毕,我提出了三个问题:1、如果四边形ABCD已经是一个菱形,那么再加上什么条件就可以变为正方形?2、如果四边形ABCD已经是一个矩形,那么再加上什么条件就可以变为正方形?3、如果四边形ABCD是一般的平行四边形,那么再加上什么条件就可以变为正方形呢?

两个实验,富有吸引力,整个过程充分体现了以教师为主导,以学生为主体的新课程理念,让学生在动手操作中探索正方形的三个定义。对于我班学生的数学基础比较扎实的情况,我觉得假如当时我乘机提出第四个问题“如果是普通的四边形,那么必须再加上什么条件才可以变成正方形呢?”可能对学生的思维发展有好处。

正方形与平行四边形、矩形、菱形的关系是教学的难点、也是教学内容的重点和关键。为此,我精心设计了一个几何画板的课件,让学生在观察动画过程中进一步了解正方形与平行四边形、矩形和菱形的关系。

从课堂学生的反映以及课后的情况看来,简简单单的一个多媒体课件起到了画龙点睛的作用,使得学生对“正方形与平行四边形、矩形和菱形的关系”这一知识点印象非常深刻。

在学生掌握了正方形与平行四边形、矩形和菱形的关系之后,我让学生进行小组讨论,引导他们从边、角、对角线和对称性四个方面归纳出正方形的特征。由于学生对正方形的定义以及正方形与平行四边形、矩形和菱形的关系这两个知识点掌握得比较好,所以不用三分钟的时间,各个小组已有了答案。概括出正方形的特征后,我马上就让学生进行练习。

现在回想起来,觉得学习正方形的特征,为的就是应用,而在实际应用中,我们看到的比较多的还是用数学符号表示出来的`特征,而当时只是将正方形的特征用文字表示出来后就马上进行练习。假如当时能再花两三分钟的时间画出图形,引导学生用数学符号将其特征表示出来,对于学生解后面的习题岂不是有更大的帮助?

大概过了七八分钟后,我看到很多学生已经完成了大部分的练习题,我就开始评讲练习。对于练习第7题,其实也是书上的例题,题目的内容是:如图12.2.8,在正方形ABCD中,求∠ABD、∠DAC、∠DOC的度数。

我拿了两个学生的答案,让全班同学比较。学生A:∠ABD=45°,∠DAC=45°,∠DOC=90°。这位学生只是将答案写了出来,没有说理过程。学生B:由于正方形是一个角为直角的菱形,对角线平分一组对角,对角线互相垂直平分,所以∠ABD=∠DAC=90×=45,∠DOC=90。

评讲试题一直是我的弱项,我不知怎样的方式才能最大限度的发挥学生的潜能,才能让学生真正的做到触类旁通、举一仿三。本节课的练习评讲,我反思了一下,觉得有以下几个方面值得我以后注意的。第一,留给学生做练习的时间不够多;第二,没能放手,让学生评学生的练习;第三,对于练习第7题,我不应该过分的强调学生B的做法,其实学生B的解法不见的就是完美的,应该让学生从这一道题慢慢学会说理的过程。

这一节课通过学生接力赛、实验、观察、讨论、思考以及教师的点拨和启发等,为学生创设了一个轻松、愉快的学习环境,激起了学生的学习热情和兴趣。这主要得意于创设有意义的数学活动,尤其是两个实验,使枯燥乏味的数学变得生动活泼。

总之,应该让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习数学的兴趣。

篇8:定义证明二重极限

定义证明二重极限

定义证明二重极限

就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0<户几卜8的一切点P,有不等式V(P)一周<。成立,则称A为函数人P)当P~P。时的'极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2<0,单调递减

且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在.

设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=[A+(a/A)]/2.解得A=√a

同理可求x0<√a时,极限亦为√a

综上,数列极限存在,且为√

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

证明四边形是正方形定义

证明垂直的方法

定义散文

高中数学证明线面平行方法

说明文的定义

成功项目定义

道德的定义

幸福定义作文

正方形面积教学反思

正方形的面积怎么算

证明正方形方法定义(精选8篇)

欢迎下载DOC格式的证明正方形方法定义,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档