【导语】“我不是狗狗狗金”通过精心收集,向本站投稿了10篇现代工业控制中的PLC编程方法论文,以下是小编为大家整理后的现代工业控制中的PLC编程方法论文,希望能够帮助到大家。
- 目录
篇1:现代工业控制中的PLC编程方法论文
现代工业控制中的PLC编程方法论文
摘要:目前随着工业控制系统复杂性不断提高以及自动化不断加强,以往面向过程的PLC编程方法变得愈加困难。面向过程的编程(POP)方法编程效率低、可维护性差。通过分析现代主流计算机编程方法,提出了一种PLC编程方法:将程序分为三个层次,以面向对象的思想对外部设备或复用性功能进行封装,以面向过程的思想实现动作流程。并以汽车微电机压装控制系统为例进行说明。
关键词:面向过程,面向对象,PLC,编程方法
现代工业自动化领域大多采用PLC作为运动控制器,传统的PLC编程严格按照时序要求从头至尾编写程序。对于简单的控制过程,其程序步骤较少,传统的PLC编程方法能够满足要求。而复杂的控制系统,程序步骤较多,容易混乱,大大降低了编程效率,并且程序扩展性能非常差。为了提高编程效率,降低后期维护成本,寻找出一种新的PLC编程方法是非常必要的。
1理论基础
目前存在两种主流的编程思维:面向过程与面向对象,这两种编程思想都有其各自的特点与性质。1.1面向过程面向过程(ProcedureOriented,PO)是一种以过程为中心,以什么正在发生为主要目标进行编程的编程思想。面向过程的程序设计(POP)注重的是算法设计,突出数据结构。NicklausWirth对此提出了著名的公式来表示程序的实质:程序=数据结构+算法面向过程的程序设计关注的是解决问题的步骤,先把软件系统分解成多个模块,然后逐步细化,完成整个软件系统。各模块之间存在相互调用和信息传递。随着软件系统规模扩大和性能要求提高,面向过程编程的缺陷逐渐明显。软件系统规模的扩大,使得模块的分解难度加大,模块之间的联系也更加复杂,软件的可靠性难以提高,可维护性差。1.2面向对象面向对象(ObjectOriented,OO)是在处理问题时,从该问题所存在的事物本身出发,以类及对象作为基本构造单元,逐步认识事物的属性和行为特征。面向对象的程序设计(OOP)需要尽力描述问题的结构,从而较好地解决客观世界描述的复杂性问题。可将程序表示为:程序=消息+对象类对象类=数据结构+算法面向对象的编程方法有利于大型软件的开发;对象属性和方法封装避免了数据随意访问,保证数据安全;类与类之间的继承关系,最大程度实现了代码的重用;继承关系下的多态性增强了程序的灵活性和扩展性[1]。然而,由于类的大量加载会牺牲系统性能,从而降低系统运行效率。
2PLC编程思想
现代工业生产的控制系统经常要涉及到多个外部设备,设备的动作往往有严格的时序要求。长久以来,编程前先按要求制作动作流程图,再按动作流程图编写程序的框架,然后以流程框架为中心添加约束与报警信息,其编程思想是面向过程的[2]。数据和数据处理过程代码是统一的,可重用代码少,且当代码量大时,维护数据和代码非常困难。面向过程的PLC编程方法的缺点有:割裂被控对象在PLC程序与现实中的联系,内部逻辑与被控对象不明确,程序的后期维护困难;程序的内部逻辑关系非常复杂,控制流程不确,容易出错;输入与输出都缺乏整体性,程序员往往孤立考虑各输入点或输出点的逻辑和控制[3]。针对传统PLC编程的缺点,结合现代计算机主流编程思维,提出一种新的PLC编程方法:以分层思想划分程序结构,以面向对象的思想对外部设备或复用性功能进行封装,以面向过程的思想实现动作流程。其原理是:将程序过程按实际划为三个层次,对每个层次中可抽象描述的对象进行类封装;并采用上层调用下层,高级调用低级的.原则,进行自下而上的PLC程序设计。三个层次分别为:时序层、外设层、输出层,其中输出层是底层;外设层是中间处理与转换层;时序层是最靠近设备操作的用户层。输出层是对PLC的输出点进行内部扩展。不管PLC程序如何编写,最终都要通过控制PLC输出来达到设备运行目的。为了增强程序的灵活性和扩展性,可将PLC的每个输出点当作对象,在程序运行过程中,输出对象在不同的工作阶段有不同的触发条件。将数字输出点的触发条件转化为内部继电器,模拟输出的触发条件转换为内部继电器与数据。外设层是对设备的封装、处理,是外部设备和外部设备功能封装模块的集合。复杂的PLC控制系统包含了多个外部设备,并且有些外部设备不止一个。以PLC为对象,外部设备可分为输入设备、输出设备与交互设备。输入设备是系统的眼睛,实时监控设备状态。输出设备是系统的动作执行设备,单个输出设备可以有一个或多个动作状态。交互设备是与PLC有数据互传的设备,可以是上位机设备或其他的通信设备。用面向对象的思想,以设备整体或设备动作状态为对象进行封装。可以大大减少了程序的重复性,并且有助于外围设备的扩展与功能的增加。时序层是PLC程序的主体,是各种功能动作流程的集合。设备运行时,动作过程必须严格地按时间顺序执行,而程序中时序过程实现必须面向过程。设备每一种现实功能都对应一个动作过程,与设备功能对应的动作过程属于高级动作流程。高级动作流程可以重复调用低级的动作流程,低级的动作流程是复用性比较高的动作流程。复用性动作流程相对高级动作流程步骤较少,可以将其以整体作为考虑对象,封装成功能模块,供高级动作流程调用。高级动作流程所对应现实设备功能主要有:启动、复位与保护等功能[4]。启动功能可以通过人机交互界面的设置不同而拥有不同的设备功能;复位功能是按一定的时间顺序恢复预定的初始状态;保护功能是通过监控输入设备的信号判断设备是否故障,并做出相应的处理。对于由输入信号判断不出故障可以由外部人工触发,并处理。时序层编写功能时要求先设计保护功能,再编写其它的动作功能,以保护人身与设备安全。
3实例
以汽车微电机压装控制系统为例,阐述本文提出的PLC编程方法。图2为压装控制系统原理图。该系统主要由TPC7062TX触摸屏、主控单元FPG-C32T2H、模拟量单元FP0-A21-F、位置控制单元FPG-PP21、伺服电机、位移传感器等组成。该系统中控制最主要的输出是控制伺服电机的脉冲输出,脉冲输出可直接以电机运行状态为对象进行封装,其余输出在程序中不需要大量重复使用,可以直接单独调用。图3为单次压装的流程,前三个过程为同向运动,为了提高工作效率,三个过程之间不能有停顿,“P点控制”可以达到此要求;慢速压装和快速退回运动方向相反,需要停顿,第三个过程完成后,直接退回到原点,快速退回功能用“E点控制”可以实现。除此外电机常用的控制还有“JOG运行(点动控制)”。通过压装流程可知该系统“P点控制”为三段控制,以“P点控制”为对象时,其“消息”由一个触发条件、三个位置、三个速度组成;以“E点控制”为对象时,其“消息”由一个触发条件、一个位置、一个速度组成;以“JOG运行”为对象时,其“消息”由一个触发条件、一个旋转方向、一个速度组成。为了适应于PLC动作过程的时序性特点,为每个对象添加一个单脉冲输出信号。当对象动作执行完成时,发出一个单脉冲信号,可以当做下一步动作的触发条件。图4为以FPWINGR为PLC编程软件时的“E点控制”梯形图。FPWINGR编程软件不支持模块封装,但是不影响面向对象思维的使用。图中R20为“E点控制”的触发条件;双字寄存器DT412的数据为“E点控制”的目标脉冲频率(速度);双字寄存器DT414的数据为“E点控制”的目标位置。对象封装的目的是避免数据随意访问,可以继承。“E点控制”中的电机属性启动速度(500Hz)、加减速时间(100ms)、正反方向的定义是以参数的形式固定在其中。当调用该对象时,默认的就继承了其属性。只需扩展多个内部继电器触发R20,就可用被多次调用继承,即多态性。同理,可设计出“P点控制”与“JOG运行”的梯形图。输出层与外设层是时序层的基础,时序层按一定的时间顺序组合输出层与外设层,并辅以必要的数据处理就形成了所需的功能。压装主流程主要有“P点控制”与“E点控制”模块,加上时间延时、计数处理与力值峰值功能就形成了一个压装的大致功能,经过后期的调试与小范围的修改就完成了一个功能的编写。依此方法编写各种所需功能,完成整个程序后,整体调试功能。后期维护需要修改某部分功能时,可以快速定位到要修改的层,再找到相应的模块;增加功能时,可以迅速查到已有硬件的封装模块,直接在时序层增加要求的功能时序。
4结束语
通过分析与实际验证,用本文所提编程方法编写PLC程序,程序逻辑更清晰,层次更分明,运行更稳定。同时为程序调试、后期程序维护、程序功能扩展提供更有效而广阔的空间。该方法适用于复杂控制系统,也适用于简单控制系统,使复杂的控制系统集体设计时分工更加明确,性能更稳定。
参考文献
[1]徐卓峰,王学军.面向过程程序设计语言与面向对象程序设计语言及其特征比较[J].中州大学学报,1997(1):64-67
[2]高云.计算机编程思想的发展研究[J].软件导刊,2012,11(11):5-6
[3]张海藩.软件工程导论[M].5版.北京:清华大学出版社,2008(2):203-211
[4]常海.基于OOP的PLC编程方法探讨[J].无线互联科技,2014(2):75-75
篇2:plc控制论文-----基于PLC的机械手控制设计
随着社会生产不断进步和人们生活节奏不断加快,人们对生产效率也不断提出新要求。由于微电子技术和计算软、硬件技术的迅猛发展和现代控制理论的不断完善, 使机械手技术快速发展,其中气动机械手系统由于其介质来源简便以及不污染环境、组件价格低廉、维修方便和系统安全可靠等特点,已渗透到工业领域的各个部 门,在工业发展中占有重要地位。本文讲述的气动机械手有气控机械手、XY轴丝杠组、转盘机构、旋转基座等机械部分组成。主要作用是完成机械部件的搬运工 作,能放置在各种不同的生产线或物流流水线中,使零件搬运、货物运输更快捷、便利。
一 四轴联动简易机械手的结构及动作过程
机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。
图1 机械手结构图
其运动控制方式为:(1)由伺服电机驱动可旋转角度为360的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组 成);(4) 旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。
其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。
步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。
二 控制器件选型
为达到精确控制的目的,根据市场情况,对各种关键器件选型如下:
1. 步进电机及其驱动器
机械手纵轴(Y轴)和横轴(X轴)选用的是北京四通电机技术有限公司的42BYG250C型两相混合式步进电机,步距角为0.9/1.8,电流 1.5A。M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。所选用的步进电机驱动器是SH-20403型,该驱动器采 用10~40V直流供电,H桥双极恒相电流驱动,最大3A的8种输出电流可选,最大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱 机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据 各自情况在10~40VDC之间选择。一般来说较高的额定电源电压有利于提高电机的高速力矩,但却会加大驱动器的损耗和温升。本驱动器最大输出电流值为 3A/相(峰值),通过驱动器面板上六位拨码开关的第5、6、7三位可组合出8种状态,对应8种输出电流,从 0.9A到3A以配合不同的电机使用。本驱动器可提供整步、改善半步、4细分、8细分、16细分、32细分和64细分7种运行模式,利用驱动器面板上六位 拨码开关的第1、2、3三位可组合出不同的状态。
2. 伺服电机及其驱动器
机械手的旋转动作采用松下伺服电机A系列小惯量MSMA5AZA1G,其额定输出50W、100/200V共用,旋转编码器规格为增量式(脉冲数 2500p/r、分辨率10000p/r、引出线11线);有油封,无制动器,轴采用键槽连接。该电机采用松下公司独特算法,使速度频率响应提高2倍,达 到500Hz ;定位超调整定时间缩短为以往松下伺服电机产品V系列的1/4。具有共振抑制功能、控制功能、全闭环控制功能,可弥补机械的刚性不足,从而实现高速定位, 也可通过外接高精度的光栅尺,构成全闭环控制,进一步提高系统精度。具有常规自动增益调整和实时自动增益调整两种自动增益调整方式,还配有RS-485、RS-232C 通信口,使上位控制器可同时控制多达16个轴。伺服电机驱动器为A系列MSDA5A3A1A,适用于小惯量电动机。
3. 直流电机
可回旋360的转盘机构有直流无刷电机带动,系统选用的是北京和时利公司生产的57BL1010H1无刷直流电机,其调速范围宽、低速力矩大、运行平稳、低噪音、效率高。无刷直流电机驱动器使用北京和时利公司生产的BL-0408驱动器,其采用24~48V直流供电,有起停及转向控制、过流、过压及堵 转保护,且有故障报警输出、外部模拟量调速、制动快速停机等特点。
4. 旋转编码器
在可回旋360的转盘机构上,安装有OMRON公司生产的E6A2增量型旋转编码器,编码器将信号传给PLC,实现转盘机构的精确定位。
5. PLC的选型
根据系统的设计要求,选用OMRON公司生产的CPM2A小型机。CPM2A在一个小巧的单元内综合有各种性能,包括同步脉冲控制、中断输入、脉冲输 出、模拟量设定和时钟功能等。CPM2A的CPU单元又是一个独立单元,能处理广泛的机械控制应用问题,所以它是在设备内用作内装控制单元的理想产品。完 整的通信功能保证了与个人计算机、其它OMRON PC和OMRON可编程终端的通信。这些通信能力使四轴联动简易机械手能方便的融合到工业控制系统中。
三 软件编程
1. 软件流程图
流程图是PLC程序设计的基础。只有设计出流程图,才可能顺利而便捷地编写出梯形图并写出语句表,最终完成程序的设计。所以写出流程图非常关键也是程序设计首先要做的任务。依据四轴联动简易机械手的控制要求,绘制流程图如图2所示。
图2 软件流程图
2. 程序部分
由于论文篇幅有限,这里只列出了开始两段程序,供读者参阅,见图3。
图3 程序列表
四 结束语
四轴联动简易机械手的各个动作和状态都由PLC控制,不仅能满足机械手的手动、半自动、自动等操作方式所需的大量按扭、开关、位置检测点的要求,更可通过接口元器件与计算机组成
PLC工业局域网,实现网络通信与网络控制。使四轴联动简易机械手能方便地嵌入到工业生产流水线中。
附另一篇论文:
摘要:介绍可编程控制器在工业控制领域的应用以及PLC在应用过程中,要保证正常运行应该注意的一系列常见问题,并给出一些合理的建议及解决方法。
关键词:PLC 工业控制 抗干扰 布线 接地 建议
一、简述
多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。
二、PLC的应用领域
目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类:
1.开关量逻辑控制;2.工业过程控制;3.运动控制;4.数据处理;5.通信及联网。
三、PLC的应用特点
1.可靠性高,抗干扰能力强。2.配套齐全,功能完善,适用性强。3.易学易用,深受工程技术人员欢迎。4.系统的设计,工作量小,维护方便,容易改造。
(1)安装与布线。动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。
PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。PLC的输入与输出最好分开走线,开关量与模拟量也要分开敷设。交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。
(2)I/O端的接线。输入接线:输入接线一般不要太长。输入/输出线不能用同一根电缆,输入/输出线要分开。尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。
输出连接:输出端接线分为独立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。
由于PLC的'输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。
使用电感性负载时应合理选择,或加隔离继电器。
PLC的输出负载可能产生干扰,因此要采取措施加以控制四、PLC应用中需要注意的问题
PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施就可以直接在工业环境中使用。然而,当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,因此在使用中应注意以下问题:
1.工作环境
(1)温度。PLC要求环境温度在0~55℃,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。
(2)湿度。为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。
(3)震动。应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。
(4)空气。避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。
(5)电源。PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。
2.控制系统中干扰及其来源
现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必须知道现场干扰的源头。
(1)干扰源及一般分类。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。
(2)PLC系统中干扰的主要来源及途径
强电干扰:PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。
柜内干扰:控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。
来自接地系统混乱时的干扰:接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰。
来自PLC系统内部的干扰:主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。
变频器干扰:一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。
3.主要抗干扰措施
(1)电源的合理处理,抑制电网引入的干扰。对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。
(2)正确选择接地点,完善接地系统。良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。
安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。
五、结束语
随着PLC应用领域的不断拓宽,如何高效可靠的使用PLC也成为其发展的重要因素。21世纪,PLC会有更大的发展,产品的品种会更丰富、规格更齐全,通过完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求,PLC作为自动化控制网络和国际通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用
篇3:PLC教学中的几点方法
PLC教学中的几点方法
PLC教学的目的是培养学生的学习兴趣,激发他们的'学习热情;引导学生开展自主学习,鼓励学生积极参与、乐于探究、勤于动手,调动学生积极参与.在教学过程中要丰富教具,运用合适的教学辅助手段,尽量运用直观教学,加强理论和实验的结合,使学生掌握PLC基本原理及其在自动控制系统中的应用,能运用PLC改造传统继电器控制系统,维护和管理自动化生产线.
作 者:张杰 陈玲 作者单位:张杰(山东省枣庄科技职业学院)陈玲(山东省滕州市聋哑学校)
刊 名:职业 英文刊名:OCCUPATION 年,卷(期):2010 “”(8) 分类号:G71 关键词:篇4:现代工业废气废水治理方法论文
现代工业废气废水治理方法论文
摘要:本文从工业废气废水着手,提出了具体处理废气的措施和注意事项,并对工业废水治理方法进行了一定阐述,希望能对工业废气废水治理有所借鉴意义。
关键词:工业废气废水;治理方法;研究
随着工业生产的迅猛发展,工业“三废”污染也愈加凸显,这也成为了我国社会经济可持续性发展的主要阻碍之一,政府和各业界需高度重视该问题的紧迫性和严重性。尤其是在废水和废气的治理上需待加强,这两者关系着我们的生活和健康。在废气污染中,对空气污染最为严重的就是含硫气体的排放,而废水排放以淀粉业、酒精业和造纸业为污染大的三大行业。在工业生产中废气和废水的治理还是需要从工艺上找出解决办法,以下是本人提出的相关措施,希望能具有一定参考意义。
1工业废气处理措施
可持续发展观的不断深入让人们对治理工业污染更为重视,在工业废气处理上也有了一定的突破。当前工业上主要用于分期处理技术的有微生物分解、活性炭吸附、催化燃烧、光解净化等4种处理技术。
1.1微生物分解技术
微生物分解也称为微生物降解,具体是筛选出可以对工业废气具有降解功能的微生物,并将所选微生物固定于相应的降解介质上,工业排放的废气在通过这些介质时会慢慢被微生物所分解,以此达到科学治理工业废气的目的,此方法前景广泛,也在加大力度推广中。
1.2活性炭吸附技术
活性炭内部独有的发达孔隙结构能有效对废气中微小分子进行吸附。可运用此技术进行废气处理第一道流程,因活性炭是十分容易饱和的,只能在短时间里具有效力,这需要不停的更换和清理活性炭,维护运行成本高,在实际操作中也仅对干燥的醇类、脂肪类废气效果明显,而废气湿度大的其处理效果并不是很理想,也容易给环境带来二次污染,需谨慎操作。
1.3催化燃烧技术
当前工业废气污染治理中运用最多的处理方式就是催化燃烧法,具体是通过对有害物质进行燃烧使其转化成无污染物质。该项技术的本质是运用催化剂将工业废气在达到着火点时所进行的.分解和燃烧,通过比较复杂的化学反应而最终生成出对空气没有污染的CO2和H2O,再将其排放于空气中。不过进行此技术对设备的要求很高,特别是燃烧设备,不仅要抗氧化、耐高温,还要有很强的抗干扰能力,所以在具体投入使用中成本比较高。
1.4光解净化技术
在工业废气处理上光解净化技术也是十分常用的方法,原理上要比其他的复杂些,以改变高分子污染物的具体内部结构为主,达到解决高浓度废气混合污染物的目的。此技术所取得的成效比较稳定,也不易造成二次环境污染,且使用周期比较长,操作中维护简单方便,成本也不高,所以在对工业废气处理中做出了重要贡献。
1.5废气处理中的注意事项
工业所排放的废气中部分是含有惰性气体的,虽然其本身危险性很低,但如果大量聚集则会降低空气中的氧气含量,容易引起窒息。排放量小的可将其慢慢通过排气导管散放到室外。面对可燃气体排放较大的,排放地就需选在人少的地方,并且在排放区严禁烟火,如果运用燃烧法对废气进行处理,必须在出口位置设置减压阀以便控制气体的排放速度,从而让气体能充分燃烧。对于助燃气体也需要谨慎处理,在临近或同一区域中严禁同时处理助燃气体和可燃气体,在对助燃气体进行处理前需清理阀门,确保助燃气体周边没有明火或易燃易爆物品。此外,在对有毒气体进行处理时,操作人员必须穿戴专门的防毒保护服饰、面罩、手套,非操作人员需提前离开,以保证毒性吸收剂和吸附剂能达到效果。
2工业废水的治理
2.1工业废水的分类及特征
污染水体的物质属性不同所导致的污染也会不同。主要将水体污染分为两类,生物性污染和化学性污染。生物性污染的主要途径是由病原微生物传播的,而导致化学性污染出现却有多种因素,包括了重金属、放射性物质和无机物等。
2.2对污水进行物理式处理
物流式污水处理方式其原理是在不改变污染物化学性质的基础上,运用物理原理对污水中的悬浮污染物进行分离去除。具体操作处理有过滤、沉淀、吸附、萃取、离心分离、膜分离等。
2.3废水的化学处理措施
2.3.1沉淀被污染废水中以离子形式存在的无极污染物
在一定情况下可以同能溶于水的沉淀剂发生化学反应,从而生成不溶于水的化合物,化合物的不断生成会随之沉淀进行分离,从而达到净化水的目的。目前以氢氧化物、钡盐、硫化物等沉淀方法为主,在对污水分解中的重金属离子处理上效果还是十分明显的。
2.3.2催化氧化法
人们在对废水进行化学处理中,通常会运用一定剂量的催化剂、氧化剂来达到对有机物进行氧化的目的。氧化剂有着反应快、效率高、条件简单的特点,能比较快速的解决降解水问题,氧化剂所具有的催化作用能很好的对废水进行催化从而生成自由基,以此来净化废水。
3结语
发达国家对工业“三废”处理十分重视,环境保护意识很强,并在废气、废水治理和控制技术上取得了良好的效果,不仅方式多样,且技术先进,在具体操作中还可根据自身情况对多样化的技术进行选择,或进行多种融合的控制技术。我国工业产业需根据实际情况,开发出适合我国的废气、废水治理技术,从生产源头上做起,并将其广泛应用,才能真正做好工业废气废水的污染治理工作。
参考文献
[1]孙莹,李素琴.吸附法处理含铬废水的研究[J].工业安全与环保
[2]赵贺.石油化工废水处理技术应用研究进展[J].化工管理
篇5:PLC在电气自动化控制中的运用论文
PLC在电气自动化控制中的运用论文
1PLC控制器的特点
第一,与相同价位和类型的控制器相比,PLC具有更优秀的功能与性能。PLC所带有的大量的编程构成可以根据用户的不同工作管理需求建立起有针对性的控制体系。除此之外,PLC还能通过网络通讯设施对工作区域众多管理控制内容进行有效的收集与分析,实现“一点辐射全区”的统一而又高效的管理控制。第二,PLC在进行设计之初就只录入了少量的数据信息,所以它具有精炼简单的构成形式,这就使得它在工作时发生事故的可能性非常小,无特殊情况下PLC系统能够持续进行平稳可靠地运行。精简的结构和平稳可靠的运行也使得PLC的维修护理工作大量减少,这不但提升了系统正常运行的时间比例,也在一定程度上减少了成本的投入。第三,PLC具有较为简便快速的编程语言形式。它不需要通过计算机系统进行复杂的录入与编程,只通过一些简单的语言就可以在短时间内实现目标工作程序的设定,然后就可以快速地投入到实际工作中去了。除此之外,PLC可以实现边运行边录入的编程,减少设备的拆卸,不仅在很大程度上能够降低设备事故的发生率,还能省去维护磨损等工作环节。第四,PLC的使用范围异常广泛,它可以适用于各种类型的设备。凡是属于标准化的管理模块,PLC均能通过录入和编写特定的代码,来满足特定情况下对各种工作设备进行生产、管理与控制的要求。第五,PLC的维护工作异常简单。PLC自设计之初就拥有较为高性能的自我检测与自我维修功能,因此其发生事故的可能性是非常小的,即使在特殊情况下出现异常状况,PLC也可以快速地检测出故障所在,此时维修人员按照PLC控制器指出的位置进行相应的'操作,就可以快速排除控制器的工作故障,使其能够及时地工作运行。
2在电气自动化中的实际应用
2。1在中央空调中的运用
冷冻系统是PLC技术在中央空调运用中的重要方面之一。数字式的控制器DDC以及继电器式控制是冷冻系统控制的主要控制形式。由于继电器控制常会出现各种问题,而且它本身的结构非常复杂,能耗也很大,所以已经被弃用。而PLC凭借着它良好的稳定性、便于维护、强大的应对干扰能力等优点,在制冷系统中得到了大量的运用。
2。2在交通系统中的运用
城市化的快速推进必然导致交通的拥堵,要想解决这个问题,维护秩序就要有良好的交通疏导体系,信号灯就是一种非常有效的交通疏导工具。传统的交通信号灯已然不能和当前的发展形势保持一致,所以许多区域开始使用PLC技术。它的优点非常多,比如对外在环境有着强大的适应性,它能够实现信号的精准控制,特别是对于岔道口,经由该项技术控制的信号灯可以实现无人管控自行运作。
2。3在数控系统中的运用
伴随着工业科技的高速发展,当前我国的数控科技已经发展为一种非常先进的科技,它的发展和PLC的运用有着非常密切的联系。直线型、点位型、连续型是当前使用最为广泛的三个数控系统类型。就工业生产领域来说,数控系统的关键在于机械制造,点位型数控系统一般用来进行诸如钻孔机床等孔洞加工机床,它可以在生产的时候从一个方位转换到另外的方位,一般情况下其参照对象并不是生产加工中的加工轨迹,其加工时一般不是在移动的状态下进行的。控制系统的实现形式主要包括单板机控制与全功能的数控装置两种类型,它们都使用了PLC,只是在其功效以及使用的区间上有一定的不同。对于全功能的装置来讲,它的功能很全面,不过造价很高,当前我国的许多单位都不需要使用这种装置。对于这类单位来讲,目前市场上使用较为普遍的是单板机控制类型,它能够对以前诸如硬件、驱动、接口等电路方面的问题和抗干扰等问题进行很好解决。其不单单能够结合生产的规定来调整机床,还可以升级机床,非常符合当前中小单位的发展规定,使其更为灵便,运作更为高效。
2。4在电池生产系统中的运用
可持续发展理念的深入使得我国电池行业得到了突飞猛进的发展,PLC控制系统在电池生产中的应用在加强生产控制的同时,有效提高了电池的质量。例如通过将PLC、触摸设备、变频设备等产品使用到FDK碱性电池的生产中,就能够有效实现对生产控制。PLC在该生产线的应用使得在一些决定电池质量的步骤得到了很好的控制,假如某个生产步骤发现了问题,就可以在最短的时间内将其处理好。在当前时期,我们国家的一些规模较为庞大的电池制造单位的生产系统中都广泛运用了这种工艺科技。
2。5在闭环控制中的应用
电气自动化包括机旁屏手动、现场控制手动、现场控制自动等多种启动形式。通过电液执行、电子调节、转速测量等单元进行对转速测量与调节器控制,是PLC闭环控制的重要体现。PLC在动力泵开启以后,会根据动力泵的累计运行时长科学的选出主备用泵设备,机旁屏手动的启动形式通过泵启动时现场开关调节,根据动力泵的累计运行时长选择主备用泵的状态。就目前来看,传统控制系统与PLC控制系统的综合使用,是使用最多的方式,二者可以在工作中进行优势互补,提高电机运行质量。另外,传统控制系统也可以在PLC系统出现问题时继续进行工作,保证了回路的持续稳定性。
3PLC自动化在电气控制中的未来发展
PLC自动化在电气控制中,虽然具备防干扰的能力,但是仍旧存在提升空间,如果电控系统处于多方干扰的环境内,PLC的防干扰效果也会受到影响。因此,我国将防干扰作为PLC的主要研究方向,促使PLC未来在电气控制中,不仅能够表现高强度的防干扰能力,还可以体现自动判断干扰源,快速采取防护措施的能力,保障PLC的系统抗干扰性质。PLC自动化在电气控制中,逐步吸收更先进的技术,推进电气控制的成熟发展,在保留原有优点的基础上,发挥更大的控制价值,提高应用能力。
4结语
PLC控制系统的大量运用得益于其显著的工作特点,它通过多种控制形式极大地提升电气自动化控制的质量,迎合不断增长的生产需求。社会的发展必然会对PLC控制系统提出更高层次的要求,所以只有对PLC进行不断更新和完善,才能保证其发挥持续、稳定、安全的作用。由于文章篇幅以及笔者能力的限制,文中提到的很多内容都未能进行详细的展开,希望以上的论述能够为广大行业从业者提供一定的借鉴和帮助。
篇6:PLC在电气自动化控制中的应用的论文
关于PLC在电气自动化控制中的应用的论文
摘 要:当代社会,电气自动化控制中最不可或缺的一项技术就是PLC技术,它的应用十分广泛。传统的电气自动化控制系统有着很大的缺陷,而且消耗大量的人力物力,最大的缺陷是不能保证质量。所以,现在我们把PLC应用到了电气自动化控制中。PLC技术在电气自动化控制中的应用,是在微软处理器的基础上,再加上当今的计算机技术以及自动控制技术等先进的科学技术。。本文主要探究在电气自动化控制中PLC的应用。
1 PLC的原理及特点
PLC组成结构如下,其原理可以大致的分为三个阶段:首先是输入采样阶段。在这一阶段,PLC通过扫描的方式依次的读取输入数据及状态,并将其存储与I/O映像区的相应单元。输入完毕就可以进入后续的用户程序执行阶段,这一阶段PLC通过由上而下的顺序对用户的程序进行扫描,对于每一条梯形图,扫描的顺序总是遵循着先左后右以及先上后下的顺序进行逻辑运算,并根据运算的结果刷新逻辑线圈在系统中的对应状态。最后是输出刷新阶段,在这一阶段,CPU会按照I/O映像区中的数据及状态刷新所有的输出锁存电路并输出到电路驱动的相关外圆设备。
PLC具有以下明显的特点:可靠性强。PLC具有极强的抗干扰能力,相比传统继电器技术更加适合于复杂的工业环境;反应快。由于PLC中将传统的机械触电继电器替换为内部自定义的辅助继电器,同时也取消了连接导线,而使用内部逻辑关系代替,为此就可以忽略其节点变位时间,不必考虑传统继电器的返回系数;操作简单。此项控制技术通过使用简单的指令形式、直观的简单程序实现现场的操作,避免了由于操作人员参差不齐的电气技术带来的问题。
2 PLC在电力系统中的主要应用
2.1开关量控制
(1)断路器控制与PLC的应用。传统的电力系统中主要的使用电磁继电器作为主要的控制器,但是由于这种器件中大量的使用电磁原件,而其自身存在的大量触点就直接的降低了所构成系统的可靠性,同时也由于接线的复杂性以及后续维修的困难性,致使近年来开始大量的使用PLC。
(2)自动切换。供电质量的重要指标是供电的可靠性,很早之前的供电企业为了加强供电的可靠性就设置了备用电源。只是最初进行的供回电线路的操作是由手动实现的,但这间隔的几秒钟时间就可以使得供电要求较高的用户蒙受很大的损失。为此,基于提升供电可靠到性的要求,PLC构成的备用电源自动投入装置开始应用于实际。这一装置通过编程来使用各种运行方式,并将采集到的一次设备的正常运行信号作为后备电源关闭或者启动的根据。由于这一系统具备逻辑判断以及数据处理功能,为此不仅可以实现备用电源的自动投切,同时可以在综合考虑系统运行状况以及其它操作。
2.2顺序控制
在火力发电系统内部,作为辅助系统的工艺流程一般可以分为开关量的控制与顺序控制两大类。随着近年来我国资源的紧张以及环境问题的恶化,传统的继电控制系统逐渐地被PLC控制系统所控制,以达到提升企业辅助车间的自动化水平。尤其是最新的PLC系统不仅可以实现单独工艺的流程控制,而且还可以通过通信总线与信息模块的连接实现全厂工作的控制。
2.3在矿井提升机中的应用
上面概述了PLC的主要功能后,这里主要针对于PLC在矿井提升机中的具体应用进行论述。
矿井提升机作为一种大型的绞车,是煤矿开采行业的重要设备。PLC在矿井提升机的应用极大的'提升了提升机的工作效率,而提升机的主要调速控制是通过变频PLC进行的。其具体的应用如下:当操作人员听到开车信号时按下开车按钮,此时PLC控制将AC380V电流接入变频器。当提升机开始运行时,首先要对电机施加直流制动,然后再松开机械抱闸,以达到防止溜车的目的。提升机在运行过程中的速度变化曲线可以通过对PLC变成进行产生,然后将经过A/D转换的信号由模拟量输出口输出以实现对于变频器的控制。实际的使用也可以根据实际工况选择人工控制提升机速度。
同时在旋转编码器的辅助下,极大的方便了检测提升机的速度以及位置。首先编码器将检测到的电机转速信号传递给PLC,然后PLC就可以根据得到的这一信号累计计算提升机的速度及行走距离,此时监视器上就会相应的显示出提升机的速度以及位置。井口还设置了液压站,其作用类似于电磁抱闸,可用于重车静止时的制动。重车制动是在PLC以及变频器的控制下实现的,先通过液压站给卷筒施加机械制动力,然后取消直流制动力。
变/工频切换和声光报警电路。这种辅助电路的设计方案是将报警装置设置在变频器端:当PLC的Q3.1,Q3.2的输出开关量为“1”时,相应的Q3.3的输出开关量为“0”,此时接触器KM2就会发生动作,将电动机接到变频器的输出端。当KM2发生动作后,相应的KM1也发生动作,即将工频电源与变频器的输出端连接以启动电机。与此同时,与接触器KM3线圈控制电路连接的接触器KM2的常闭触点断开,以达到接触器KM3不接通的状态,以保证整个系统处于工频运行状态。
当变频器在运行的过程中发生故障而跳闸,此时的变频器的“NC-COM”触点就会断开,导致KM1以及KM2线圈均失电,其主触点就会切断变频器与电机、电源之间的连接。与此同时“NO-COM”触点也会相应的闭合,从而导致警报扬声器HA以及报警等HL进行声光报警。PLC内部的时间继电器也会得电,并在一定的延时后闭合,从而使得Q3.3的输出为“1”并保持,使得电机的运行状态进入工频运行状态。
此外PLC在中央空调、公交系统、数控系统以及在泵类电机中都有着广泛的应用。
3 PLC发展趋势
不断加强PLC的抗干扰能力。尽管PLC控制系统具有很好的抗干扰能力,但是对于一些电磁干扰过于强烈或者是生产环境极为恶劣的情况也会致使PLC控制系统的控制失误或者运算失误,从而导致正常的生产运行受到干扰。为此,在今后的一段时间内,不断研发具备更高抗干扰能力的PLC系统,不断的提升其在设计、安装以及使用中的性能。
网络化以及数字化。目前在火电系统中,DCS技术逐渐的普及并逐步成熟,只是近几年的发展较为缓慢,而PLC作为发展迅速的技术,使得二者在发展的过程中相互吸收、利用,并逐渐发展成为新的控制系统—FCS系统。这一系统即有原来系统的优势,同时也具备了工业自动化的、智能化、数字化的特点,因此在近年来的火电厂发展中得到广泛的应用。
结语
鉴于未来多种行业的生产过程具有不同的控制需要,为此PLC控制系统需要不断开发新的产品,使得产品的规格更为齐全、性能更加优异,不断促进自动化控制网络、国际通用网络以及人类电气化的发展。我们相信在未来的几年,PLC会有更大的发展,不仅产品种类更加丰富、规格更加齐全,并且全新的人机界面也会使得这一技术更好的适应工业控制场合的需要。
篇7:数控机床PLC控制主轴制动改造方法
1 引言
通常机床主轴电动机制动时,采用的是能耗制动方式,使电动机AB相输入直流电源,
采用能耗制动方式使主轴电动机停止,主轴在低档位低速旋转时,大约需要0.5s,在高档位高速旋转时,大约需要2.5s。目前,采用的主轴电动机制动方法如图1所示,先断开KM1,再闭合开关KM2,从而断开三相交流电源,接通直流电源,延时2.5s,认定主轴电动机停止旋转,然后进行换刀或其它动作。
主轴以不同的速度旋转时,采用能耗制动方式使主轴停止所需要的时间不同,采用同样的能耗制动时间,延长无意义的加工辅助时间,降低了机床工作效率。另外,一旦开关KM2不能可靠闭合,或者直流电源保险断开不能正常提供直流电,则主轴电动机只能在摩擦力的作用下减速,制动时间需要很长,但延时2.5s 后,机床数控系统仍然认定主轴电动机已经停止旋转,此时机床进行换刀或其它动作容易造成事故。
因此,我们对机床主轴制动控制方式进行了改进设计,判断主轴旋转状态,不采用延时2.5s,即认定主轴电动机停止旋转的控制方式,而是实时监控主轴旋转状态,当主轴旋转低于一定转速时,立即发出主轴停止完了信号。
2 主轴转速监测方案
在电动机的同步传动轴上安装一块条形铁片,和电动机同步旋转,由接近开关对其检测,每转检测到两个脉冲信号,通过对脉冲信号的检测而得知其转速。检测脉冲信号有两种方案。
第一方案:在一定周期Tp内读取脉冲信号的个数N,PLC是一种顺序控制器,它的程序是由前到后一步一步执行,每执行完一遍为一个扫描周期,然后从头开始循环执行。假如程序有2000步,每步执行时间周期为30μs,则程序的扫描周期约60ms,扫描频率约16Hz,能够准确检测出的脉冲频率应低于 8Hz,当转速的脉冲频率大于16Hz,即转速n≥480r/min时,PLC受其扫描频率的影响,不能准确检测出脉冲的个数,情况不好时,会出现高速时检测的脉冲个数很少,误判为电动机基本停止而进行下面动作,造成事故,
此种方案只适用于主轴低速旋转状态的监测。
第二种方案:检测脉冲信号持续为“0”或“1”的时间T,当n<60r/min时,发出主轴停止完了信号。由于PLC程序执行过程的延时,数控系统收到主轴停止信号,并执行下面动作时,主轴已完全停止旋转,n=60r/min所对应脉冲信号持续为“0”或“1”的时间T为0.25s,因此我们把检测脉冲信号的计时器设定为0.25s。同样高速时也会出现脉冲测不准的情况,但不管情况多坏,在0.25s的时间内“0”或“1”至少变化一次,因此可以准确地判断主轴是否停止旋转。此方案可以适用于主轴高速或低速旋转时主轴制动状态的检测。在实际应用中,我们采用了此方案。
3 PLC实现主轴能耗制动的控制方法
PLC设计程序中,X20.0为转速脉冲信号的输入,M05为主轴停止信号,Y50.0为主轴停止完了信号。
两个计时器TM1、TM2分别判断X20.0脉冲信号持续为“0”或“1”的时间是否达到设定的时间,只要有一个时间到达,即R100.1或 R100.2变“1”,导致R100.3变“1”,此时M05为“1”,导致Y50.0输出“1”,则发出主轴制动完了信号,实现了主轴停止的准确判断。
4 结束语
我们采用改进的控制方式用PLC控制机床主轴的制动,能够可靠地判别机床主轴的旋转状态,避免了机床的误动作,节约了主轴加工的辅助时间,使机床的保护性能更趋于完善。
篇8:电铸机床中的PLC控制技术
电铸机床中的PLC控制技术
摘 要:本文介绍了基于PLC控制的电铸机床控制系统的设计。主要介绍采用可编程序控制器和触摸屏技术的数控电解加工机床的结构特点、控制系统的软、硬件结构及其关键技术,和机床的主要先进功能。电铸就是利用金属离子阴极电沉积原理,在导电原模上沉积金属、合金或复合材料,并将其与原模分离以制取制品的原理,它是电镀的特殊应用。该系统利用触摸屏作为显示和外部控制终端,采用EB8000界面编辑软件,设计良好的人机交互界面。使用三菱FX系列PLC作为核心控制器,步进电机是通过FX2N-1PG脉冲输出模块改变脉冲频率以及方向信号来实现调速、正反转控制及位置控制。触摸屏作为人机接口,可以实现对运动和加工参数的修改、控制加工流程的执行、显示运动参数的变化,使系统控制界面友好,简单直观,便于操作。大大提高了电铸机床自动化程度,使电铸加工更加高效、快捷。
关键词:电铸机床;可编程控制器;触摸屏;脉冲输出模块;步进电机
1.电铸加工原理及控制系统方案设计
1.1 电铸加工的基本原理
电铸是用金属电沉积的方法制备产品的一种特种加工工艺,主要用于某些特种产品的成型。用导电的原模作阴极,用于电铸的金属作阳极,电铸溶液是含有阳极金属离子的金属盐溶液,在电源的作用下,电铸溶液中的金属离子在阴极导电原模(芯模)上还原成金属[1],沉积于导电原模表面,同时阳极金属源源不断地变成离子溶解到电铸液中进行补充,市电铸液中金属离子的浓度保持不变[2]。其原理如图1所示。
电铸成形是利用电化学过程中的阴极沉积现象来进行成形加工的。当阴极导电原模上的电铸层逐渐增加,达到要求厚度时,停止电铸,将铸件与原模分离,获得与原模型面相反的电铸件,这种电铸件的形状和表面粗糙度与原模相似。
电铸所用的设备及电铸溶液与一般电镀中所使用的基本相同,但是在制品的要求上电铸与电镀有两个主要不同点:第一,一般电镀层要求与基体金属牢固结合,而电铸层与原模并不要求牢固结合,有时反而要求点铸件能很容易地从原模上分离下来;第二,电铸层的厚度要求比一般电镀层厚得多,约十倍甚至数十倍[3]。
与其他方法相比,电铸加工有自己独特的优点[4]:
1)电铸品的机械性质容易调整,例如硬度、抗拉强度等等。
2)可减小与母模之误差,加工精度高,公差可达±2.5μm。
3)能将传统加工方式难于加工的零件内表面转化为原模外表面,可通过制造易成型的原模材料而获得难成型的金属材料,尤其是制作薄壁金属零件。
4)可以制成多层结构件,将多种金属、非金属拼铸成一个整体。
5)适合制作一个或量产,而且电铸层的厚度范围宽。
电铸加工缺点:
1)电铸速度慢,生产时间比其它方法长,塑料成形用模具的电铸有时需2-3周。
2)电铸制品的尖角或凹槽部位的电铸层厚度不均匀,制品存在一定的内应力。原模的划痕、斑点等会复制到制品表面。
3)制造原模需要用精密机械加工设备和照相制版等技术,成本较高。
4)可真实复制外形或模样,所以母模上的小伤痕也会再生,这是优点也是缺点。
1.2 电铸工艺的特点
1)表面细微特征的复制能力特别强。由电铸工艺过程可知,电铸层紧贴在芯模表面以原子直径的尺寸(亚纳米级)逐渐堆积、向外生长,故它能准确复制出芯模表面精度达到纳米级的细微特征,因此,当将电铸层与芯模分离后,即可得到粗糙度与芯模相当、纹理相反的镜像表面,这就是电铸技术最基本的、也是最典型的工艺特点。这一特性已被广泛用于印刷制版、光盘模具及光学部件的加工中。光盘表面用于记录信息的沟槽,其宽度为0.4μm,深度为0.12μm[5]。
除对表面粗糙度要求极高的光学部件外,这一特有的复制能力还被应用于部分采用传统技术无法加工的零件制备上。如波导管、文氏管等对内表面的尺寸及精度要求较高、同时内表面直径小的零件,采用传统加工技术无法加工,无法使内表面尺寸及精度达到要求。如果采用电铸技术,可使难以实施的内型面加工转变为容易实施的外型面加工。其加工过程如下:先加工一个外表面的形状、尺寸及精度与波导管、文氏管内表面完全一致的芯模,再利用电铸技术在芯模的外表面上制备厚度超过图纸要求的电铸层,也就得到了内表面的形状、尺寸及精度与芯模外表面完全一致的电铸层,然后按照图纸要求对电铸层外表面进行机加工,最后将芯模退除,即获得内表面尺寸及精度均符合要求的高品质的产品。
2)生产周期及成本电铸层是金属原子一层层逐渐堆积而成的,其生长速度与所使用的电铸工艺参数(如溶液温度及pH值、阴极电流密度等)有关。适当提高阴极电流密度可以提高电铸层的生长速度,但阴极电流密度的提高受电沉积过程三个因素的限制:金属离子从溶液本体向阴极表面迁移的速度、金属离子在阴极表面的还原反应速度、离子还原后在阴极表面的迁移和晶粒成核及晶粒长大的速度[6]。
篇9:浅谈基于PLC 在悬挂输送链同步控制中的应用论文
浅谈基于PLC 在悬挂输送链同步控制中的应用论文
1 前言
随着工业自动化的发展和普及,悬挂输送线是连续输送线的一种,在制造业应用越来越广泛。悬挂输送线是在空间连续输送物料的设备,物料装在专用支架上沿悬挂链在预定轨道运行。线体可在空间上下坡和转弯,布局方式自用灵活,占地面积小。可以用于车间内部或各个车间之间工件物品的连续输送,并可调节其输送速度,十分有利于装配等作业,是目前国内企业中使用较多的一种输送线。
2 悬挂输送链的简况及其工程应用
2.1 悬挂输送链的概况
悬挂输送线是一种三维空间闭环连续输送系统,适用于车间内部和车间之间物品的自动化输送。根据输送物件的重量,可分为轻型的牵引式悬挂输送线、轻型积放式悬挂输送线和重型积放式悬挂输送线。主要由输送链条、电机、导轨、张紧装置等组成。链条是输送机链的牵引部件,能在水平方向、垂直方向任意回转。在较长的输送情况下,可能由两三台电机来驱动。
2.2 传统控制系统的不足
传统输送链控制系统采用一个变频器和一个电机来驱动整个悬挂链,这种对于重载和弯轨多的输送线容易导致弯轨易磨损。另外采用一台变频器直接驱动两台电机,这种对于负载变化大的系统不适合,在生产过程中变化更大,尤其是在开始也就是向空线吊挂工件时以及生产结束向输送链不挂只卸工件时及在换品种(重量有差异)会发生电机不同步的情况。
2.3 控制系统的改进与工程应用
两三台电机在一个系统中,就要求各个电机之间保持同步,在现在控制系统中,主要有以下控制模式:①控制系统中电机速度相同,②同步控制系统中几台电机的转速保持某一固定比例同步运转,③控制系统中几台电机按角位移保持相同的速率。所以,多电机同步协调控制是当今研究的重要方向之一。本系统采用PLC 控制,两台变频器分别控制两台电机,是一种基于位置闭环控制的同步运行系统。
3 输送链控制方式及原理
3.1 输送链的控制方式
本系统采用PLC 触摸屏等控制,保持两台电机同步。主动电机按PLC的DA模块发出的直流(0-10V)电压运转, 2# 电机(从动电机)张紧处加位移传感器测量其位移量并反馈给PLC,以原点值为基准对偏移量进行运算,处理后向控制从动电机的变频器发出偏移指令,使其速度与电机的速度保持一致。
3.2 输送链的控制原理
通过触摸屏设定一个频率给PLC,经程序转换PLC 输出给主动电机(1# 电机)变频器的DC 电压,电压与速度成线性关系。计算如下:
(1)电机的转速计算如下:
n = n0×(1 - s)=(60×f÷P)×(1-s)
(2)变频器输入与输出频率与电压的关系:变频器给定值(V)/ 变频器输出频率(Hz) = 10(V)/ 变频器上限频率(Hz)其中:上限频率:10V 时的变频器输出频率。
(3)输送线运行速度与电机速度的关系:V = n×i由此得出,变频器给定值和极数、传动比、转差率、变频器上限频率设置等有关系,本系统中,考虑实际操作简单,选择两台电机、齿轮传动、变频器型号都一样,所以只需比较给定值就行了。
4 悬挂输送线控制系统设计
4.1 硬件配置
4.1.1 控制系统选择
综合上述情况考, 选用型号为CPU-224 的S7-200 系列PLC,,变频器采用三菱FRE740-3.7-CHT,人机界面选用的是西门子触摸屏6AV6 648-0BC11-3AX0, 显示尺寸为7 英寸宽屏,它具有丰富的画面对象库及动画效果,这些配置就可以满足系统的要求。
4.1.2 硬件电路
硬件结构包括外设与PLC 控制系统的硬件部分。控制对象主要由驱动电机、位移传感器、触摸屏;PLC 控制系统由CPU单元、电源单元、输入输出模块、通讯模块、A/D转换模块等构成。
4.2 组态及软件设计
4.2.1 组态设计
现场人机界面用西门子系列组态软件 WinCC flexible 设计开发,它具备完善的生产监控管理功能,可以对系统输送线监控,对输送线等设备的运行停止进行控制,并对生产过程进行实时数据采集和控制显示等。在触摸屏上设置了当前位移值及1# 电机的转速,记忆保存上次设定的`转速值。组态显示当前张紧位移值的状况,显示报警状况并提示检修部位。
4.2.2 程序设计
①程序设计流程图:
②各个开关量控制及运算等常规控制在主程序中,这里不在赘述,下面重点描述模拟量、数字量及同步处理的问题。作为一个主要控制条件,从动电机的速度是通过位移传感器送出0-10V 模拟信号反馈到控制系统中,VW110 为设定的原点值,CPU224 通过模拟量A+ 读取该值即AIW0,通过程序处理转化为数字量(VW102)并显示在触摸屏上当前值一栏,参数设定速度值为VW104,程序中固化设定最大只能为45HZ,传感器偏移量0-32000mm 对应着变频器的频率为0-50HZ。故位移增量640mm,输出为1HZ,VW110 是频率转换为相应的数字量。
VW110 经过数模转换为模拟量AQW0 输出给主动电机,然后将采样的位移传感器值VW102 与原点值VW100 进行比较,大于或者小于会将差值加上原来的频率值给VW130,VW130 再通过EM235 将数字量转化为模拟量AQW4 送给从动电机,使从动电机的速度和主动电机趋于一致。
以上就是悬挂输送线控制系统PLC 设计的全部过程,原理分析,程序设计,程序编译和画面的组态。。该悬挂输送链的应用比较稳定、可靠、安全等,实施后也取得了一定的经济效益。
篇10:PLC在电气自动化控制中的应用分析论文
PLC在电气自动化控制中的应用分析论文
摘 要: 就现今的形势,全面介绍了电气自动化的现状,论述了当前国内电气自动化控制系统的设计思想、系统组成以及未来的电气自动化控制系统的发展方向。当前国外大企业不断进入,在这一专业领域必将出现很大的空缺,那么就必然出现人才短缺的现象。电气自动化涉及各行各业无处不在,而从事电气自动化的人员几乎都是个多面手,可从事造作系统、自动控制、电力电子技术、信息处理、测试技术、研究和发展、经济管理、电子和计算机技术应用等工作。随着大型外企不断进入,这种复合型才毕竟成紧缺状态。
关键词:PLC电气自动化; 应用现状; 发展前景
引言
PLC是为了在工业环境下使用而设计的一种可编程逻辑控制器系统。其存储器采用了可编程序以实现在其内部存储进行运算、控制、记录等操作指令,并可以将存储内容通过数字或模拟量等形式进行输入或输出来控制工业生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点。
1、电气自动化概念。
电气自动化是研究与电气工程相关的系统运行、自动控制、电力电子技术、信息处理、实验分析、研制开发以及电子与计算机等领域的一门科学。在我国解放后便开始对电气自动化进行深入研究,并且开始设立本科专业。进入新世纪随着电力电子技术、微电子技术的迅猛发展,使其发展日趋多元化。尤其是结合了目前嵌入式、网络、通信等技术后,电气自动化已出现在我们身边的各个领域。
2、PLC在电力系统中的应用现状
2.1、顺序控制
火力发电系统内的辅助系统的工艺流程的控制多为顺序控制和开关量控制两种。随着改革的深入以及国家对节能减排要求的逐步提高,该行业在生产过程中降低资源损耗和提高效益已成为各企业的管理最终目标。 因此对类似企业辅助车间的自动控制水平也提出了更高的要求,近年来大型火电企业的辅助系统均已由PLC控制系统代替了原来的继电控制器,并且随着科技的进步采用PLC控制系统不仅可以单独控制某个工艺流程,并且可以通过信息模块与通信总线连接来协调全厂生产工作。输煤系统。 输煤系统的优劣决定着生产效率的高低以及环境的优劣,输煤系统至今已经经历了人力控制、强电控制和现在采用的计算机控制等几个阶段,一般火力发电企业的输煤系统包括上煤、储煤、卸煤、配煤以及其辅助系统等构成。 输煤控制系统由主站层、远程IO站、现场传感器等三层的网络结构,其中PLC和人机接口构成主站层,该部分一般设置于系统集控室内;主站层通过光纤通讯总线与远程IO站相连接,远程IO站设备与输煤传感器通过二次控制电缆相连接。其集控室内主要以自动控制为主、以带联锁或解除联锁的手动控制为辅,运行人员在控制室内可以通过显示屏来实现对系统设备进行监视和控制并可以通过紧急事故开关和检修启停按钮来控制系统状态,该种技术的使用可以在很大程度上提高生产效率,并减少了运行人员工作量和改善了工作环境。
2.2开关量控制
断路器控制。原来的火电系统内多采用电磁型继电器为主要元件的控制器,该系统采用了大量电磁元件,因此其自身的大量触点大大降低了系统的可靠性,同时该种系统还具有接线复杂、维修困难等缺点,而近年来PLC的运用则用大量软继电器代替大量的实物元件,因此大大提高了其可靠性,运行人员只需进行简单的分合闸操作,在操作过程中系统能够根据实际能否运行而给出相应的指示信号,并且在系统发生故障时可以自动分闸,同时给出信号指示;PLC控制系统可以大大简化二次接线,且线路都存在各自的公共端因此接线过程中还不容易发生错误,且其无需配备专门的闪光电源,在具备符合要求的程序前提下只进行简单的接线即可满足要求;并且PLC控制系统可简化其辅助开关数目,并可实现多台断路器的控制及信号集中显示,可以减轻工作人员的`维护和检修工作量。自动切换。 为了加强供电的可靠性,备用电源自动投入装置多年前就应用在火电企业当中,最初为手动或自动进行供回电线路的操作,虽然该操作过程往往之需要几秒钟的时间,但对于有连续供电要求的用户来说也是不允许的,因此,为了提高供电的可靠性,由PLC够成的备用电源自动投入装置应运而生,其可以通过编程来使用各种运行方式,其将采集到的一次设备的正常运行信号作为备用电源启动或关闭的依据,由于该控制系统具有数据处理以及逻辑判断功能,因此其不仅能完成备用电源自投的操作,且其能考虑系统运行情况以及其他操作要求,同时系统本身具有很强的抗干扰能力,并具有可靠性高、接线简单、调试操作方便以及成本低等优点。
2.3闭环控制
泵类电机。火电成内泵类启动方式一般有自动启动、机旁屏手动启动以及现场控制箱手动启动几种。 自动状态下泵的开机时由PLC内顺控模块根据各个泵的累积运行时间长短来选择主备用泵;而机旁屏开启方式则是需调节现场开关的方式来启闭泵,其主备用泵则是根据人类对运行时间的比较来决定每台泵的启闭,而若要在现场对其进行操作则需将开关调至 “调速器手动” 档位才能实现。 现在火电厂泵类的控制有PLC和常规控制两种,一般讲常规回路作为PLC控制的补充,及作为泵类控制的安全回路,即实现了即使PLC故障也可保证泵类的正常使用。调速器控制。 调速器至今经历了机械液压调速器、电气液压调速器以及计算机调速器几个阶段,其中PLC控制系统一般由转速测量单元、电子调节单元和电液执行单元构成,其三个单元分别控制着调速器的转速测量、调节规律的形成和驱动导水机构的职能。
3、PLC预测发展前景
3.1进一步网络化、数字化。目前用于火电系统控制系统的DCS虽技术日益成熟但近年来其发展日趋缓慢,PLC的产生及发展使其与DCS相互吸收彼此特点,逐步同化,并逐步发展成为新的控制系统——FCS系统,其既保留了原来系统的特性又实现了工业自动化技术的发展,并使数字化、智能化控制得到进一步的发展和应用,因此其近年来在火电厂的应用日益广泛。
3.2增强抗干扰性。如生产环境过于恶劣,或是电磁干扰异常强烈则也可造成PLC控制系统的运算或是控制错误,导致在某些生产环节出现错误而不能保证正常的生产运行,因此,提高PLC的可靠性是其未来发展的主要方向,其一方面要提高抗干扰能力同时在设计、安装以及使用过程中引起重视,尽量减少对其造成负面影响。
3.3PLC产品还可以用于离散、制程和混合式自动化产品领域,并在各个制造行业保持稳固增长。基于对更高自动化程度和更高能效的需要,制造业会越来越多地应用PLC。在制造过程中,以最低生产设备生命周期成本来实现适应性和灵活性的日益增加的需求,给PLC的创新与发展提供了不竭的动力。一些新兴行业的运用以及新能源产生、储存和基础设施建设的需要,无疑给PLC带来了巨大的机遇。
4、结束语
为了能够更广泛的适应未来各种工业生产过程中控制场所的需要,PLC控制系统作为自动化控制网络和国际通用网络的重要部分其产品将会更加丰富,规格也会更加齐全,并将在人类电气自动化发展过程中发挥更加广泛的作用。
参考文献:
1、刘善增.PLC控制系统的可靠性设计[J]。工业控制计算机,2004(7):39~41。
2、刘新正.PLC控制系统的开发与应用[J]。新世纪水泥导报,2005(2)。
3、刘海荣,赵湛.PC~PLC集散控制在船闸电气自动化的应用[J]。工业控制计算机,2007,20(4)。
4、郑晟,巩建平,张学.现代可编程序控制器原理与应用[M]。北京:科学出版社,1999。
★ 编程类论文致谢
★ 浅谈会计控制论文
现代工业控制中的PLC编程方法论文(精选10篇)




