数学代数教学总结

时间:2022-11-25 16:12:50 作者:Janis 教学总结 收藏本文 下载本文

“Janis”通过精心收集,向本站投稿了16篇数学代数教学总结,以下是小编为大家准备的数学代数教学总结,仅供参考,欢迎大家阅读。

篇1:数学代数教学总结

数学代数教学总结

在学习vb过程中,很多同学简单地认为布尔值true就是―1或非0值,false就是0,这种看法是错误,下面将布尔值、逻辑运算和关系运算总结如下:

在vb中,布尔(boolean)值有两个:true(真)和false(假),布尔值可以用于逻辑、关系(比较)和算术运算中。

1)布尔值用于逻辑运算中,结果为布尔值。

例如:

print not true, not false

print true and true, true and false, false and true, false and false

print true or true, true or false, false or true, false or false

结果为:

false true

true false false false

true true true false

【总结】

not 非运算规则:非真则假,非假则真

and 与运算规则:只有都是true,结果才为true(只要有一个为false,结果就为false)

or 或运算规则:只有都是false,结果才为false(只要有一个为true,结果就为true)

2)布尔值用于关系(比较)运算中,结果为布尔值。

例如:

print true >false

结果为:

false

【总结】在关系运算中,true小于false。

3)布尔值用于算术运算中(true当作―1,false当作0),结果为数值型。

例如:

print true + 3, false + 3

结果为:2・ 3

1)逻辑运算说明

数值用于逻辑运算中,非0值当作true,0当作false,结果为数值型。

注:true and n和false or n的结果为n,其他情况true写成―1,false写成0(即结果可能为n、―1或0)

例如:

print true and 5, true and 0, false and 5, false and 0

print true or 5, true or 0, false or 5, false or 0

结果为: 5 0 0 0

―1 ―1 5 0

【注意】布尔值可用于算术运算;数值可以用于逻辑运算。但不能认为true和―1、false和0完全等价。

● 算术运算的'结果必然为数值型。

● 关系运算(比较运算)的结果必然是布尔值。

● 逻辑运算的结果可能是布尔值或是数值型。

2)关系(比较)运算说明

数值、日期、字符和布尔值都可以比较。

● 日期比较的规则是“日期在后的大”

● 字符比较的规则是按照ascii码比较,空格<“0”―“9”<“a”―“z”<“a”―“z”<汉字

● 布尔值比较的规则是假大于真。

例如:

print 3 < 5

print #9/19/# >#9/18/2009#

print “abc” >“abcd”

print true >false

结果为:

true

true

false

false

例题:(16)设a=4,b=3,c=2,d=1,下列表达式的值是

a>b+1 or c

a)true b)1 c)―1 d)0

【分析】

a>b+1 即 4>3+1 结果为 false。

c

b mod c即3 mod 2结果为 1。

即false or false and 1。and优先级高于or,false and 1结果为0。

false or 0的结果为0。

所以本题答案为0 。

篇2:代数教学总结

一、代数式的定义:

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

注意:

(1)单个数字与字母也是代数式;

(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;

(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:

把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:

1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;

2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序。如式子(a+b)·2·a应写成2a(a+b);

3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

4.在代数式中出现除法运算时,按分数的写法来写;

5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数

单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:

(1)单项式的系数包括它前面的符号;

(2)若单项式的系数是“1”或-1“时,”1“通常省略不写,但“-”号不能省略。

2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。

注意:

(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;

(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。

3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数。

4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。

七、列代数式:

用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。

正确列出代数式,要掌握以下几点:

(1)列代数式的关键是理解和找出问题中的数量关系;

(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;

(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。

八、代数式求值:

一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。

常见考法

列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。

误区提醒

(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;

(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。

(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。

篇3:代数教学总结

同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:

1.大家在学习了高数后,难免在学习线代时后劲不足;

2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。

然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。

最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!

篇4:代数教学总结

20xx-20xx学年第二学期的教学工作已顺利结束,为了及时、准确了解考试状况,以便不断改进教学,现将本次考试情况总结如下:

一、对试卷的总体评价:

1.命题目的

1)用于考查学生对基本知识的掌握情况

2)用于考查学生运用所学知识分析和解决问题的能力

2.预期结果

本次考试基本上达到了预期的'目的,试题较科学、严谨、试卷内容覆盖面宽、试卷结构合理,由于本班学生是三年高职生,基础较好、学习态度端正加之复习准备较充分,所以考试成绩较理想。

二、学生成绩分布情况:

三、分析失分的原因;

本试卷共包括6个大题:

(1)填空题,本题占总分的10%,学生平均得分约8分,掌握较好,说明学生的基础知识较扎实。

(2)选择题,满分30分,平均得分约27分,掌握较好,说明学生对基础知识理解透彻。

(3)判断题,该题满分15分,平均得分约13分,掌握较好,说明学生的判断力较强。

(4)计算题,该题满分31分,平均得分约27分,掌握较好,说明学生的计算能力较强。

(5)证明题,该题满分5分,平均得分约5分,掌握较好,说明学生的基础知识较扎实。

(6)解方程,满分9分,平均得分约7分,掌握一般,说明学生的计算能力欠缺。

其中失分较多的题目是解方程,原因是:

a.三年高职学生的数学基础相对五年高职和三年中职的学生来说要好得多,但随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,通过一学期的学习,学生的数学水平有很大的提高,但个别学生学习数学的兴趣较底,书面表达能力较差。因此根据要求分析和证明上错误较多,失分情况较多。

b.因学生来源不同,学生的层次不同,内地学生基础普遍较好,本地学生基础相对较差。

四、存在的问题及建议:

a.随着高校招生规模的扩大及我院招生速度增加,整体学生素质也相对下降,招生时应有所选择。

b.教学方法有待改进。

篇5:数学代数教学总结 布尔值、逻辑运算、关系运算总结

数学代数教学总结 布尔值、逻辑运算、关系运算总结

在学习VB过程中,很多同学简单地认为布尔值True就是-1或非0值,False就是0,这种看法是错误,下面将布尔值、逻辑运算和关系运算总结如下:

在VB中,布尔(Boolean)值有两个:True(真)和False(假),布尔值可以用于逻辑、关系(比较)和算术运算中。

1)布尔值用于逻辑运算中,结果为布尔值。

例如:

Print Not True, Not False

Print True And True, True And False, False And True, False And False

Print True Or True, True Or False, False Or True, False Or False

结果为:

False   True

True    False    False    False

True    True     True     False

【总结】

Not 非运算规则:非真则假,非假则真

And 与运算规则:只有都是True,结果才为True(只要有一个为False,结果就为False)

Or  或运算规则:只有都是False,结果才为False(只要有一个为True,结果就为True)

2)布尔值用于关系(比较)运算中,结果为布尔值。

例如:

[1] [2] [3] 下一页

篇6:初中代数教学

摘 要:代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。

学生在学习的时候会产生一些困难,特别的初一学生刚刚接触代数,对代数的了解有一定的困难,在这里就初中代数的特点和学生学习代数谈谈自己的看法。

关键词:初中 代数 概念

代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。

初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的'困难所在。

为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要环节。

数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数量关系,以及代数式的一些初步应用知识。

要注意始终以小学所接触过的代数知识(小学没有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。

初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。

如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。

学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———负数,与学生日常生活上的联系表面上看不很密切。

他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。

我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。

即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集(非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准备。

正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。

再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。

这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。

初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。

另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。

这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚

不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。

学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。

学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。

总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好中小学数学课堂教学的衔接和提高教学质量有很大的现实意义。

篇7:关于数学初一代数教案

1、教学目标:

1) 知识与技能目标:

① 让学生经历代数式概念的产生过程,了解代数式的概念.

② 使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和

解释简单实际问题中的数量关系.

2) 过程与方法目标:

① 使学生在探索与创造的数学学习活动中,学会与人合作、与人交流.

② 通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变”学会“为”会学“.

3) 情感与态度目标:

① 渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.

② 激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯.

③ 利用实际情境,渗透爱国主义教育和乡土文化教育,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心.

2、教学重、难点:

1) 教学重点:代数式的概念和列代数式.

突出重点措施:

(1)通过比较--判别--交流--构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解.

(2)通过”根据语言表述的数量关系列代数式“和”把代数式表示的数量关系用语言表述“两方面进行对比、观察、归纳,让学生获得必需的数学经验.

2) 教学难点:用代数式表示实际问题中的数量关系.

突破难点策略:

(1)分三步分散难点①引入时设计大量学生身边的实际情景,让学生体会到代数式存在的普遍性.②让学生给自己构造的一些简单代数式赋予实际意义,使学生进一步体会到代数式的模型思想。③通过”开动脑筋齐探索“和”返程路上解疑问“等环节进一步提高学生分析、解决实际问题的能力.

(2)通过FLASH演示情景,小组合作交流等形式突破代数式的应用瓶颈.

3、教学流程:

教学 环节 教学过程 师生活动 设计说明

创设情境导入新课引导学生欣赏鲁迅纪念馆的照片,简单介绍鲁迅其人其事,进行爱国主义教育和乡土文化教育,激发学生的自豪感,并请学生做导游,点出这节课的主线:边参观鲁迅纪念馆边学习身边的数学.

沿参观旅程依此遇到下列问题:

1、大家知道鲁迅纪念馆距学校有多远吗?若鲁迅纪念馆距学校s千米,校车的速度为50千米/小时,那么经多少小时后到达博物馆?

2、买门票.鲁迅纪念馆门票价格为:成人每人60元,学生每人40元.如果让你去买门票,你该怎么买?我们有a个老师b个学生,买门票需付多少钱呢?

3、在参观时了解到了纪念馆的一些情况:

(1)鲁迅纪念馆共有鲁迅故居、百草园、三味书屋、鲁迅祖居和鲁迅生平事迹陈列厅等4个开放场所,建筑面积分别为a,b,c,d平方米.,你知道平均每个场所有多少平方米吗?

(2)鲁迅生平事迹陈列厅呈长方形,东西长m米,宽n米,共展出鲁迅生平展品p件. 那么鲁迅生平事迹陈列厅占地面积为多少平方米呢?平均每平方米展出了多少件展品呢?

让学生根据情景列出算式.

【师】:展示图片,引导学生进入参观的旅程.

【生】:成为参观旅程的主角,依次解决旅程中遇到的实际问题.

【师】:在点出字母表示数后引导学生列算式.并回顾前一节中的书写规定,突出书写的规范性.

由学生熟悉的鲁迅纪念馆引入,进行爱国主义教育和乡土文化教育,体现数学的人文价值,突出数学的教育功能.让学生做导游,体现学生的主体地位.碰到的一些数学问题都是在旅途中出现的,符合学生的认知特点,激发学习的内动力,也使学生意识到代数式的普遍性.1、2两题的设计是为了渗透代数式的普遍意义。

1)类比旧知探新知:

引导学生观察上面所列的算式:

它们与我们以前学过的算式有什么区别?点出课题(板书课题)

概念:像 这样含有字母的数学表达式称为代数式

先判别下列哪些是代数式?再说说你对代数式构成的看法. 【师】:引导学生观察算式,并与以前学过的算式相比较,得出概念.

在学生交流的基础上点明代数式的构成。

让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识,获得对概念的理解,发展数学能力。改变学生的学习方式,变”学会“为”会学“。

师生互动探索新知

动手计算再探新知

欢乐游戏巩固新知

对代数式构成的理解:

(1)一个代数式由数、表示数的字母和运算符号组成. 这里的运算指加、减、乘、除、乘方和开方6种运算.

(2)为了今后研究和表述方便,规定单独一个数或者字母也称代数式.

2)大家一起来列式:

用代数式表示:

(1) x的3倍与3的差;

(2) x的 倍与y的一半的和;

(3)2a的立方根;

(4)a与b的和的平方;

(5)a与b的平方的和.;

(6)a与b两数的平方和.

巩固练习:用代数式表示:

(1) a与b的 的和 ;

(2) m与n两数的倒数差;

(3) 除 所得的商;

(4)x与1的差的平方根.

教师在讲评时突出代数式的书写规范及列代数式的注意点,点明各种运算的意义:”+“--和,”-“--差,”ד--积,”÷“--商.

3)聪明才智共编式

请根据下列数字与字母,添上适当的运算符号,编写出几个你喜欢的代数式,并试着用语言表述所编代数式的意义.

以小组为单位,先互相交流编写的代数式及其意义,然后挑选1-2个简单的代数式,结合生活实际,试着赋予代数式实际意义,并在组内交流.

篇8:关于数学初一代数教案

复习目标

1、使学生系统地掌握整数、小数、分数、百分数的意义。

2、使学生熟练的掌握十进制计数法和整数、小数数位顺序表,并能正确的熟练的读、写整数与小数,会比较数的大小。

3、能熟练地进行小数、分数与百分数的互化。

复习过程

一、回顾与交流

1、复习数的意义。

(1)你学过哪些数?说一说它们在生活中的应用。

①学生说出自己的认识和理解。

如:整数、小数、分数、百分数、负数等等。

②联系课文情境图,说出各种数的具体含义。

如:1722是自然数。这里表示词典页码的数量:有1722个1页。

8844.43是小数。表示八千八百四十四又百分之四十三。

是分数。这里表示把全年天数平均分成5份,空气质量良好的占其中的3份。

40%、60%是百分数。这里分别表示羊毛和化纤成分占总成分的百分率。

-25℃是负数。它表示比0℃还低的气温度数。

(2)什么是整数?

①学生说一说什么是整数,整数包括哪些数。

②师生共同概括说明。

像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。整数的个数是无限的。自然数是整数的一部分。“1”是自然数的单位。

③做一做

是正数,()是负数。

()是自然数,()是整数。

2、数的读、写

(1)数位顺序表。

整数部分小数点小数部分

…亿级万级个级

数位…个位十分位…

计数单位…︵个

︶十分之一…

①填一填,读一读。

②什么是数位?数位与位数相同吗?

③什么是计数单位?相邻的计数单位之间的进率是多少?

④做一做。

27046=2×()+7×()+4×()+6×()

(2)读法和写法。

①读出下面各数。

1060000000.00625.08

a、读一读。

b、说一说读数的方法、要点。

②写出下面各数。

九十万三千二十亿五千零十八零点二零零八

a、写一写

b、说一说你是怎么做的。

(3)改写。

①把540000改写成以“万”作单位的数。

②把24940000000改写成以“亿”作单位的近似数。

过程要求:

a、学生改写。

b、说一说改写的方法、要点。

3、数的大小。

(1)怎样比较两个数的大小?

(2)完成练习十三第6题。

4、分数、小数、百分数的互化。

(1)填一填。

小数分数百分数

0.25

12.5%

(2)说一说你是怎么做的。

二、巩固练习

完成课文联系十三第1~5题。

过程要求:

(1)学生独立完成,教师巡视,了解情况,进行个别指导

(2)同学之间互相交流。

(3)提问:说一说你是怎么做的,发现问题及时纠正。

三、课堂小结

本节课中你有什么收获?还有什么疑问,请和同学交流。

复习内容:数的认识(二)

复习目标:

1、使学生进一步理解和掌握分数、小数的基本性质。

2、使学生进一步理解因数、倍数、质数、合数等意义,能熟练地找出两个数的公因数、公倍数等。

3、熟练掌握2、3、5倍数的特征,并正确解决有关问题。

复习过程:

一回顾与交流

1、分数的基本性质与小数的基本性质。

(1)分数的基本性质。

①分数的基本性质是什么?

板书:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

②填一填。

③分数大小不变,但什么变了?(分数单位变了)

(2)小数的基本性质。

①小数的基本性质是什么?

板书:小数末尾添上0或者去掉0,小数的大小不变。

②把下面的小数改写成两位小数。

0.3002.54.3000

③小数大小不变,但什么变了?(小数计数单位变了)

(3)小数的基本性质与分数的基本性质是一致的.

如:0.3=0.30=0.300

==

(3)小数点移动位置,小数的大小会发生什么变化?

如果把小数点向右移动一位、两位、三位……这个小数比原来的数就扩大10倍、100倍、1000倍……如果把小数点向左移位一位、两位、三位……这个数就比原来的数缩小10倍、100倍、1000倍……

2.倍数与因数。

(1)什么是倍数?什么是因数?举例说明。

①4×5=20

20是5和4的倍数。4和5都是20的因数。

②20的因数还有哪些?一共有多少个?

20的因数有1,20,2,10,4,5。一共有6个。

③4的倍数还有哪些?一共有几个?

4的倍数有4,8,12,……,有无数个。

④着重说明:

最小个数

因数1本身有限

倍数本身/无限

(2)2、3、5倍数的特征。

①2的倍数特征是什么?举例说明。什么是偶数?什么是奇数?

个位上是0,2,4,6,8的数都是2的倍数。是偶数。

②5的倍数特征是什么?举例说明。

个位上是0或5的数,都是5的倍数。如:10,25,45,60等。

④3的倍数特征是什么?举例说明。

各个数位上的数字之和是3的倍数,这个数是3的倍数。如123,303等。

(3)什么是质数?什么是合数?

①什么是质数?最小的质数是什么?

②什么是合数?最小的合数是什么?

③1是什么数?(1是奇数。既不是质数也不是合数)

(4)公因数与公倍数

12的因数20的因数50以内6的倍数50以内8的因数

12和20的公因数50以内6和8的公倍数

(5)对于“倍数和因数”这一单元,你还知道哪些知识?还有什么疑问?

同学之间互相交流,教师巡视指导,发现问题及时纠正。

二巩固练习

完成课文练习十三第7~9题。

复习内容:数的运算(一)

复习目标:

1.通过复习使学生进一步系统地理解掌握加、减、乘、除四则运算的意义和计算方法。从而培养学生概括能力与计算能力。

2.能综合运用所学的知识和技能解决问题,发展应用意识。

复习过程:

一回顾与交流

1.四则运算的意义。

A我们折了36颗红星,还折了28颗蓝星。

B我们买了40瓶矿泉水,每瓶0.9元。

C我们有24m彩带,用做蝴蝶结,用做中国结。

(1)创设情境,让学生结合情境图提问题。

问:你能提出哪些用计算解决的问题?

学生提出问题,并说明解决方法。如:

①一共折了多少颗星?36+28

②折的红星比蓝星多多少颗?36-28

③买矿泉水用了多少钱?0.9×40

④做蝴蝶结用了多少彩带?做中国结用了多少彩带?

24×24×

⑤做蝴蝶结用的彩带是中国结的几分之几?

÷

(2)结合算式说明每一种运算的含义:

①什么叫做加法?小数加法、分数加法的意义相同吗?

②什么叫做减法?小数减法、分数减法的意义相同吗?

③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?

④什么叫做除法?小数除法、分数除法的意义相同吗?

小结:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少/

3.四则运算的方法。

(1)整数、小数加法、减法的计算方法各是什么?

(2)分数加法、减法的计算方法各是什么?

(3)它们有什么相同点?

整数加减时,数位对齐;

小数加减时,小数点对齐;计数单位相同才能相加减。

分数加减时,分数单位相同。

(4)整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?

小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。

(5)说一说整数、小数除法的计算方法。

(6)说一说分数乘法和除法的计算方法。

4.在四则运算中,应注意一些特殊情况。

出示以下内容:

a+0=a×0=()0÷a=()

a-0=()a×1=()a÷a=()

a-a=()a÷1=()1÷a=()

注意:当a作除数时不能为0。

以上交流基础上,让学生进行归纳。

整数、小数分数(百分数)

加法意义

计算方法

特殊情况

减法意义

计算方法

特殊情况

乘法意义

计算方法

特殊情况

除法意义

计算方法

特殊情况

5.四则运算的关系。

四则运算的关系可概括如下:(以提问方式完成下面关系网)

和-一个加数=另一个加数

被减数-差=减数

减数+差=被减数

加减减法

求相同加数和的算便运算求相同减数个数的算便运算

乘法除法

积÷一个因数=另一个因数

商×除数=被除数

被除数÷商=除数

小结:加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数的加法简便算法。除法是乘法的逆运算,也是乘法的还原,它是减法是发展是求相同减数的减法的简便运算。

二巩固练习

1.完成课文做一做。

2.完成课文练习十四第1、2题

3.课堂小结。

篇9:初中数学代数教案

代数式

教学目标

1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;

2、初步培养学生观察、分析及抽象思维的能力;

3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习?

三、教学重点和难点

重点:用字母表示数的意义?

难点:正确地说出代数式所表示的数量关系??

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、引言

数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具?学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用?

中学的数学课,是从学习代数开始的?除了学习代数以外,同学们还将陆续地学习了平面几何、立体几何、解析几何等内容?

学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度?没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的?

在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点?

代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习?

(一)、从学生原有的认知结构提出问题

1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a•b=b•a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac?

指出:(1)“×”也可以写成“•”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数?

2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0?25小时,试问步行、骑车、乘汽车的速度分别是多少?

3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)?

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b, 以及a2等等都叫代数式?

那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容?三、讲授新课

1、代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式?

学习代数,首先要学习用代数式表示数量关系,明确代数上的意义?

2、举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克?

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m?

例2 、说出下列代数式的意义:

(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b) 2

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(3) 的意义是c除以ab的商; (4)a- 的意义是a减去 的差;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方?

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点?如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等?

例3 、用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积?

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面?

解:(1) ; (2)(m-5n)2 (3)2x+y; (4)3tν3?

(四)、课堂练习

1、填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____?

2、说出下列代数式的意义:(投影)

(1)2a-3c; (2) ; (3)ab+1; (4)a2-b2?

3、用代数式表示:(投影)

(1)x与y的和; (2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和?

(五)、师生共同小结

首先,提出如下问题:

1、本节课学习了哪些内容?2?用字母表示数的意义是什么?

3、什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号?

七、练习设计

1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长?

2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3、飞机的速度是汽车的40倍,自行车的速度是汽车的 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4、a千克大米的售价是6元,1千克大米售多少元?

5、圆的半径是R厘米,它的面积是多少?

6、用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长?

八、板书设计

篇10:初中数学代数公式

同学们对数学中三角函数半角公式的知识还熟悉吧,下面我们一起来回顾一下哦。

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

以上就是老师对数学中三角函数半角公式知识的讲解,希望给同学们的学习很好的帮助,相信同学们会好好学习上面的知识吧。

初中数学图形计算公式

对于数学中图形计算公式的内容知识,我们做下面的讲解学习,相信大家会认真学习的哦。

图形计算公式

1、正方形:C周长S面积a边长周长=边长×4C=4a

面积=边长×边长S=a×a

2、正方体:V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3、长方形:C周长S面积a边长周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4、长方体:V:体积s:面积a:长b:宽h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形:s面积a底h高面积=底×高÷2s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高

6、平行四边形:s面积a底h高面积=底×高s=ah

7、梯形:s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷2

8圆形:S面C周长∏d=直径r=半径

(1)周长=直径×∏=2×∏×半径C=∏d=2∏r

(2)面积=半径×半径×∏

9、圆柱体:v体积h:高s:底面积r:底面半径c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3

上面对数学中图形计算公式知识的讲解学习,同学们都能很好的掌握了吧,希望同学们会做的更好吧。

初中数学和差问题公式

下面是老师对数学中和差问题公式知识的讲解,希望给同学们的学习很好的帮助吧。

和差问题公式

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或小数+差=大数)

相信通过上面对和差问题公式知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考出优异成绩哦。

初中数学公式之植树问题

关于数学中的植树问题相关公式的学习,下面是老师讲解的此知识的相关内容,希望给同学们的学习很好的帮助。

植树问题

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2、封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

通过上面对植树问题的相关公式知识的讲解学习,希望同学们对上面的知识都能很好的学习,大家努力哦!

初中数学公式之盈亏问题

下面是对数学中关于盈亏问题的相关公式的知识讲解,希望给同学们的学习很好的帮助哦。

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

以上对数学中盈亏问题公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会在考试中取得优异成绩的哦!

篇11:初中数学数与代数知识点总结

初中数学数与代数知识点

一、一次函数图象 y=kx+b

一次函数的图象可以由k、b的正负来决定:

k大于零是一撇(由左下至右上,增函数)

k小于零是一捺(由右上至左下,减函数)

b等于零必过原点;

b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

其图象经过(0,b) 和 (-b/k , 0) 这两点(两点就可以决定一条直线),且(0,b) 在 y轴上, (-b/k , 0) 在x轴上。

b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

二、不等式组的解集

1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1 。

2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

A 的解集是 解集 小小的取小

B 的解集是 解集 大大的取大

C 的解集是 解集 大小的 小大的取中间

D 的解集是空集 解集 大大的 小小的无解

另需注意等于的问题。

三、零的描述

1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。

A、零是表示具有相反意义的量的基准数。

B、零是判定正、负数的界限。

C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。

2、零的运算性质

A、乘方:零的正整数次幂都是零。

B、除法:零除以任何不等于零的数都得零;零不能作除数;0没有倒数。

C、乘法:零乘以任何数都得零。 ab=0 a、b中至少有一个是0。

D、加法 a、b互为相反数 a+b=0

E、减法(比较大小用) a-b=0 a=b; a-b>0 a>b; a-b<0 a

3、在近似数中,当0作为有效数字时,它表示不同的精确度,不能省略。

四、因式分解分解方法

首先提取公因式,然后依次用公式,十字相乘,分组分解法,若都不行,再拆项添项试一试。必须进行到每一个多项式因式不能再分解为止

1、提公因式法

首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2、公式

a2-b2=(a+b)(a-b)

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2 ,还立方差和及其他公式

3、十字相乘

运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解。

将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

4、分组分解法

多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

再提公因式(m+n)

a(m+ n)+b(m+ n)

=(m +n)?(a +b)。

可见如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

初中数学知识记忆方法

归类记忆法就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。

歌诀记忆法就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

规律记忆法。

即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值×进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。

列表记忆法就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。

重点记忆法随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

联想记忆法就是通过一件熟悉的事物想到与它有联系的另一件事物来进行记忆。

初中生数学学习差的原因

1、被动学习。许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

4、思维方式和学习方法不适应数学学习要求。

初二阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

学好初中数学的关键

一、课内重视听讲,课后及时复习

初中数学的能力培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与老师讲的有那些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,一定要让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,并养成良好的解题习惯。

要想学好初中数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要以基础题目入手,以课上的题目为准,提高自己的分析解决能力,掌握一般的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态、正确对待考试

首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上。因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮 ,谁也不能把我打垮的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在保证正确率的前提下提高解题速度。对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥。

篇12:高等代数教学论文

高等代数教学论文

高等代数教学中的几点感悟

文/宋雪丽

摘 要:在大学数学课程中,高等代数是其中一门十分重要的科目。结合教学实践,谈了一些感悟。

关键词:内容;概念;方法

高等代数是大学数学课程中一门重要的专业基础课程,为后继课程提供必不可少的数学理论基础知识,一般都在大学一年级开设。由于该课程是学习大学后继相关课程的基石,同时也是研究其他学科的工具,许多高等院校都将高等代数列为研究生招生考试课程,因此,该课程在整个专业课程体系中地位很高。由于该课程的抽象性和枯燥性,许多初学者往往觉得学起来很困难。因此,作为高校教师,如何培养学生对高等代数的学习兴趣,提高高等代数的课堂教学质量显得尤为重要。结合多年的教学实践经验,下面我谈谈在《高等代数》教学中的一些感悟。

一、尽量与中学数学内容相联系

高等代数课程中的许多教学内容与中学数学有着紧密的联系。例如数与数域,中学教材中有整数、有理数、实数及复数。高等代数中介绍了数域的概念;多项式,在中学数学教材中就有多项式的加、减、乘、除四则运算法则。在高等代数中严格定义了多项式的次数及加法、减法、乘法运算,介绍了多项式的整除理论及最大公因式理论;方程,中学教材中有一元一次方程、一元二次方程的求解方法、一元二次方程根与系数的关系。高等代数中介绍一元n次方程根的定义、复数域上一元n次方程根与系数的关系及根的个数、实系数一元n次方程根的特点、有理数一元n次方程根的性质及其求法;方程组,中学教材中有二元一次方程组、三元一次方程组的消元解法。高等代数中有n元一次线性方程组的行列式解法(克拉默法则)和矩阵消元解法、线性方程族解的判定及解与解之间的关系;空间与图形,中学教材中有平面与空间向量的长度与夹角,高等代数中有欧式空间向量的长度和夹角。

通过以上分析,高等代数与中学数学在内容上有很多相关联的地方。不同的是中学数学知识比较浅显,面也比较窄,而高等代数将中学数学的内容拓宽了许多,同时也抽象了许多。因此作为老师,要正确地引导学生以较高的观点去认识中学教学内容。例如,通过线性方程组的矩阵解法、有解判别定理以及解的结构所反映的辨证思想,指导学生对中学数学的加减消元法本质的认识。高等代数中有许多概念,有些概念比较抽象,学生也不明白这个概念有什么用。这种情况下,老师在讲课时,可以先不必马上讲出这个概念,可从学生所熟悉的中学知识出发,由具体到抽象,慢慢地转到主题上。

二、深刻理解概念

高等代数中概念很多,几乎每一章节都涉及到了概念,而且有些概念还很相似,好多题的证明都要通过概念来证明。因此,在教学中,要让学生深刻理解、体会概念。譬如,阶行列式的定义,是由所有位于不同行不同列的n个元素乘积的代数和得到的。(www.fwsir.Com)只有深刻明白了这个定义,才能用行列式的定义来解题。还有多项式中,零多项式与零次多项式的区别,线性空间的同构与欧几里得空间的同构的相似点和区别。

俗话说:“书读百遍,其义自见”,要告诫学生多读几遍书,多思考,思考得多了,自然就理解了。只有理解概念了,才能在解题中熟练、灵活地运用这些概念来证明。

三、课堂上注重教学方法

教师的教学方法是影响学生学习方式的重要因素,在培养学生的创新能力方面起到重要作用。为了上好每一堂课,老师一定要注意教学方法。我曾参加了全国高校教师网络培训课程,听了张贤科老师主讲的高等代数,受益很多。张老师在讲一些高等代数内容时,根本没有按课本思路去讲,有些性质的证明运用其他方法来证。大家都知道高等代数中很多章节内容是彼此相关联的。老师在讲课中,没必要完全照课本来讲,例如,讲一个定理或一条性质的证明,可以运用以前所学的知识证出来,老师可鼓励学生运用不同的方法来证明,激发学生的思维能力,这样学生也会觉得不是太枯燥。

上课时切忌照本宣科,要说课,这节课大家需要掌握什么,教学大纲的要求,考试要考的知识,重点、难点是什么,使学生清楚这节课堂的目的,做到有的放矢。代数学的一些重要内容,例如集合的线性运算、八条运算规则、等价关系等经常出现的内容,我们采用类比的方法进行讲授,使学生能触类旁通,举一反三。对于一些难于理解的定理的证明,则着重介绍证明思想及每个证明阶段的技巧和预备知识,并要求学生课后复习。对于一些较抽象的概念,在讲授之前,应尽可能地介绍它们的应用背景或简单例子,启发学生思维从具体到抽象升华。

针对高等代数这门课程的.特点,应注意传统教学手段与现代化教学手段相结合。概念性知识较多的章节可以应用多媒体技术,而对那些理论证明较多,难以理解的内容,则采用传统的教学手段,一步步引导学生推理验证,更易于让学生接受、掌握。

四、培养学生数学思维的审美性

数学同其他学科一样,蕴含着美,存在着美的价值。代数学这朵奇葩,更以其高度的抽象性,理论的严谨性,应用的广泛性,在数学王国里独领风骚,展现出其多姿多彩的迷人风貌。

高等代数的美是内在的、深沉的、含蓄的,不易被大家所发现、接受。这就要求我们在教学中注意引导学生挖掘数学美,审视数学美,追求数学美,创造数学美。只有如此,我们才能将抽象的概念、空洞的定理、刻板的推导、繁琐的计算、枯燥的理论变换成一种美的享受,美的追求。这对诱发学生的求知欲,激发学生的学习兴趣,提高学生的学习效率起着极大的推动作用。

高等代数中,蕴含着许多数学特有的美,数学的语言美在高等代数中表现得淋漓尽致。数学语言是一种科学的语言,它除具有一般语言文字和艺术共有的特点外,更有“符号化”的特点。例如,用AX=B,其中A=(aij)mn,表示一个有m个方程n个未知量的线性方程组,多么简洁明快。另外,高等代数的美也体现在证明过程的逻辑严密上,许多定理的证明层层递进,严丝合缝,看懂了一个证明,就能给人一种惊叹佩服、赏心悦目的感觉。

总之,高等代数中的数学美无处不在,只要我们教师在教学过程中用心去揭示,从美的角度去挖掘,并积极引导学生去欣赏、体味定能感觉美不胜收,回味无穷,教学质量必将提高。

注:西安科技大学博士启动基金资助项目(QDJ040)。

(作者单位 陕西省西安科技大学理学院)

篇13:代数的教学方案

有关代数的教学方案

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的`数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

篇14:代数教学反思怎么写

1、注重学生的双基训练的同时必须注意培养学生的自学能力

这节课,先让学生自己阅读课本,了解相关的概念,然后完成自学检测,教师进行适当点评后,学生完成分层练习,巩固对概念的掌握。整一节课基本是以学生自学为主线,完成整个教学过程。意在培养学生的自学能力。如果学生可以养成自己阅读课本,在相应的教材内容中获得自己所需的知识,学生的自学能力会得到很好的锻炼。

但从课堂的实施情况中可以看到,虽然这个教学班的学生基础比较好,起点比较高,但是整个学习过程并不是一帆风顺,可以说学生是在磕磕碰碰中完成了学习任务。几个本来并不难理解的知识点,比如“多项式的项”、“多项式的排列”,如果学生有一定的数学学习的基础和独立分析问题的能力,应该可以自己顺利完成学习,但事实上,必须由老师不断加以点评、分析,学生才能较准确地把握相关语句的含义,说明学生对数学语言的理解和表达还是存在较大困难。这个让学生阅读课文的习惯必须要进一步培养。

这节课的教学内容并不难,如果采用讲授的方式,很快代数式教学反思以上的学生都可以理解、掌握,配以学习卷上的分层练习,学生的双基训练很到位,单纯地从学生接受知识的角度,讲授法应该效果更好。但同时学生的自主学习的习惯和能力也不知不觉地被忽略了。事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约。

虽然表面上看,这节课采用这种自学模式好像浪费了不少时间,由于老师要不是插入将瓶,导致课堂的时间比较紧张,但是,从学生的长远发展出发,我还是觉得应该采用这种模式,使学生在起始年级开始养成一个好的学习习惯,对他们应该是有利无害的。这节课是一次初步的尝试,在今后的教学中我还要多加以运用。

2、教师的教学方式要根据学生的实际情况

本课的知识点比较简单,属于概念介绍型的,在教师的知识层面上看是非常简单、易懂的知识点。我在曾经听过一些老师上相关内容的课时,采用了比较简单的介绍形式,也就是举出一个多项式的例子,然后按照课本的概念,一下子就把的多项式的项、最高次项、多项式的次数都确定下来了,对于一些理解能力比较差,反应比较慢的学生根本没有办法接受,结果在自己动手解决问题的时候就遇到了很多的障碍。

因此,我在学生阅读课本以后,进行点评时,我向学生介绍了以加、减号为分界线把多项式带符号分段的方法解析“项”的概念,然后逐项逐项在单项式的有关知识的基础上求出各项的次数,解析“最高次项”,进而解析“多项式的次数”。学生在这样详细的剖析中,才能把刚才在课本中阅读到的相关概念慢慢地转化为相应的数学符号,理解这些概念。

所以我觉得,我们上课,不能只考虑要学生学什么,还应该更要考虑学生需要怎样学。作为初一的学生,刚从小学生上来,还没有摆脱小学那种被动接受型的学习方法,如果我们初一的老师在这方面不注意引导的话,就容易出现脱节,造成学生提早出现分化。

这节课在这一点的处理上我觉得我是成功的。

3、教学的重构思

结合这节课暴露的问题,如果再次设计这一学习卷的话,在自学指导部分,学习“多项式的次数”时,我会再细化一些,把课堂上我讲解的部分,用脚手架的形式呈现在学习卷上,让学生阅读课本的时候有一根拐杖,这样就可以更大限度的照顾到各层面学生的学习要求。在学习“多项式的排列”的时候,增设一个例题,让学生有一个规范的样板,学习起来不会造成这些不必要的困惑。

总之,一堂课的教学总存在这样那样的遗憾,我要在不断的思考和总结中调整,才能适应学生的要求,适应教材的变化和课标的要求。

老师也需要学习再学习。

篇15:代数教学反思怎么写

课后与学生作交流,有以下几种情况:

(1)能达到我们所制定的目标在教学的过程中我以例题精讲,并与中考相同或靠近的题目为例,在解题过程中实现三个目标,化解重难点,使学生了解,理解,掌握并应用!

(2)突出中考的热点现在中考试题强调个性与创新,我在例题中也突出(如用“¤”定义新运算:对于任意实数a,b都有a¤b=(a*a+b)÷3,求3¤(-2)的值。)这样考察了学生的阅读理解能力,同时也作适当的拓广。

(3)注重基础重在实效题目面对大众,不搞偏难怪。让学生“看起来块块,做起来怪怪”,使学生对此类的题不敢掉以轻心,不敢瞧不起“它”。

(4)进行“小题大做”思想贯彻对于如:计算:

解题前提问:如何解答?让学生思考并回答。而后我再作答,比较学生刚才他们的思路有何不同。并注:必须按部就班,一步一个脚印,切记应小题大做!不能单有一个答案。

(5)强化书写格式在解题的过程中,我巡视学生的作题情况,对于发现问题作出及时处理以达到规范。

(6)同时也存在几个缺点①有的知识点没有顾及到,②有的学生没有自觉在解决问题,③与学生互动不激烈。

(7)以后的努力①夯实基础②题目靠近中考,让学生了解中考理解中考,实战中考,对其不陌生,觉得中考不过而而。③在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用。

篇16:代数教学反思怎么写

第一、能达到我们所制定的目标。在教学的过程中我以例题精讲,并与中考相同或靠近的题目为例,在解题过程中实现三个目标,化解重难点,使学生了解,理解,掌握并应用!

第二、注重基础重在实效题目面对大众,不搞偏难怪。让学生“看起来块块,做起来怪怪”,使学生对此类的题不敢掉以轻心,不敢瞧不起“它”。

第三、进行“小题大做”思想贯彻对于如:计算:

解题前提问:如何解答?让学生思考并回答。而后我再作答,比较学生刚才他们的思路有何不同。并注:必须按部就班,一步一个脚印,切记应小题大做!不能单有一个答案。

第四、强化书写格式在解题的过程中,我巡视学生的作题情况,对于发现问题作出及时处理以达到规范。

第五、同时也存在几个缺点①有的知识点没有顾及到,②有的学生没有自觉在解决问题,③与学生互动不激烈。

第六、以后的努力①夯实基础②题目靠近中考,让学生了解中考理解中考,实战中考,对其不陌生,觉得中考不过而而。③在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用。

看过代数式教学反思的人还看了:

五年级数学方程与代数测试题

数学教学总结

数学教学教研总结

新课改数学教学总结

初中数学教学年度总结

三年级数学教学总结

高一数学教学总结

六年级数学教学总结

初一数学教学总结

数学第二册教学总结

数学代数教学总结(精选16篇)

欢迎下载DOC格式的数学代数教学总结,但愿能给您带来参考作用!
推荐度: 推荐 推荐 推荐 推荐 推荐
点击下载文档 文档为doc格式
点击下载本文文档