【导语】“fhbvffxgubjk”通过精心收集,向本站投稿了18篇任意角三角函数精彩开场白,以下是小编整理后的任意角三角函数精彩开场白,仅供参考,希望能够帮助到大家。
- 目录
- 第1篇:数学《任意角三角函数》说课稿第2篇:《任意角三角函数》数学说课稿第3篇:《任意角三角函数》数学说课稿第4篇:《任意角的三角函数》教学反思参考第5篇:下学期>>4.3 任意角的三角函数第6篇:下学期>>4.3 任意角的三角函数第7篇:《任意角的三角函数》教学反思第8篇: 《任意角的三角函数》教学反思第9篇: 《任意角的三角函数》教学反思第10篇: 《任意角的三角函数》教学反思第11篇: 《任意角的三角函数》教学反思第12篇:《任意角的三角函数》中职数学说课稿第13篇:《任意角的三角函数》数学教学方案第14篇:《任意角的三角函数》优秀说课稿设计第15篇:《任意角的三角函数》第一课时教学设计第16篇:任意角数学教案设计第17篇:数学三角函数倍角公式第18篇:数学三角函数倍角公式
篇1:数学《任意角三角函数》说课稿
各位领导,各位老师:
我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1.2.1节。
一、教材结构与内容简析
本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。 三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。
二、教学重点、难点、关键
教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、学情分析
学生已经掌握的内容及学生学习能力
1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、学生的运算能力较差。
3、部分同学对数学的学习有相当的兴趣和积极性。
4、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。
四、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,我制定如下教学目标:
1、基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的'定义;
2、能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。
3、情感目标:通过学习,渗透数形结合和类比的数学思想,培养学生良好的思维习惯。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
五、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法, 在课堂结构上,设计了 ①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④总结反思——提高认识⑤任务后延——自主探究五个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。 接下来,我再具体谈一谈这堂课的教学过程:
六、教学程序及设想
总体来说, 由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义。
先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。
(一)创设情境——揭示课题
问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?
【设计意图】学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
问题 2:角的概念推广之后,这样的三角函数定义还适用吗?
问题 3:若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能表示吗?怎样表示?针对刚才的问题点名让学生回答。 用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
【设计意图】
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值)。
问题 4:对于确定的角 ,这三个比值是否与P在 的终边上的位置有关?为什么?
先让学生想象思考,作出主观判断,再引导学生观察右图,联系相似三角形知识,探索发现: 对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。 所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
(二)推广认知——形成概念
将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。
教师指出: sinα、csα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,ctα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
【设计意图】定义域是函数三要素之一,研究函数必须明确定义域。 指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(三)巩固新知——探求规律
为了使学生达到对知识的深化理解,进而达到巩固提高的效果,
例1,已知角 的终边过点 ,求 的六个三角函数值
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。
巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。
例2,求 的正弦、余弦和正切值。
分析: 终边上有无穷多个点,根据三角函数的定义,只要知道 终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关, 然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师总结符号记忆方法,便于学生记忆。
【设计意图】判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的“才”字符号法则,这也是理解和记忆的关键。
(四)总结反思——提高认识
由学生总结本节课所学习的主要内容:⑴任意角的三角函数的定义及其定义域;⑵三角函数的符号规律。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)任务后延——自主探究
学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。
六、简述板书设计。
ctα、cscα、secα的定义写在sinα、csα、tanα的左下方,突出本节重要内容的主体地位。
结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。
希望各位领导 、同行对本堂说课提出宝贵意见。
篇2:《任意角三角函数》数学说课稿
一、教学目标
1、掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义。
2、经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程。领悟直角坐标系的工具功能,丰富数形结合的经验。
3、培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观。
4、培养学生求真务实、实事求是的科学态度。
二、重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法。
难点:把三角函数理解为以实数为自变量的函数。
关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学。
四、教学过程
执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业]
(一)复习引入、回想再认
开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域。
现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域。
设计意图:
函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程。教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备。
(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数。请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:
学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
(二)引伸铺垫、创设情景
(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能推广吗?怎样推广?针对刚才的问题点名让学生回答。用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4。1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
设计意图:
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值):
把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r。
根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:
设计意图:
此处做法简单,思想重要。为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形。由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数。初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义。这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等)。
(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?
追问:锐角α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化。
引导学生观察图3,联系相似三角形知识,
探索发现:
对于锐角α的每一个确定值,六个比值都是
确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
设计意图:
初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键。这样做能够使学生有效地增强函数观念。
(三)分析归纳、自主定义
(情境5)能将锐角的比值情形推广到任意角α吗?
水到渠成,师生共同进行探索和推广:
对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):
终边分别在四个象限的情形:终边分别在四个半轴上的情形:
(指出:不画出角的方向,表明角具有任意性)
怎样刻画任意角的三角函数呢?研究它的六个比值:
(板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:
α=kππ/2时,x=0,比值y/x、r/x无意义;
α=kπ时,y=0,比值x/y、r/y无意义。
追问:α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化。
再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。
综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析)。
因此,六个比值分别是以角α为自变量、以比值为函数值的函数。
根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x)。其它几个三角函数也如此
投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:指导学生识记六个比值及函数名称。
教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求)。
引导学生进一步分析理解:
已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值。因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便。
设计意图:
把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握。明确比值存在与否的条件,为确定函数定义域作准备。动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵。引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务。由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对“三角函数可以看成是以实数为自变量的函数”的理解有半信半疑之感,有待通过后续的应用加深理解。
(四)探索定义域
(情景6)(1)函数概念的三要素是什么?
函数三要素:对应法则、定义域、值域。
正弦函数sinα的对应法则是什么?
正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα。
(2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:
三角函数
sinα
cosα
tanα
cotα
cscα
secα
定义域
引导学生自主探索:
如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围。
关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R。
对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}。
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
设计意图:
定义域是函数三要素之一,研究函数必须明确定义域。指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(五)符号判断、形象识记
(情景7)能判断三角函数值的正、负吗?试试看!
引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:
(同好得正、异号得负)
sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负
设计意图:
判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键。
(六)练习巩固、理解记忆
1、自学例1:已知角α的终边经过点P(2,—3),求α的六个三角函数值。
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义。
课堂练习:
p19题1:已知角α的终边经过点P(—3,—1),求α的六个三角函数值。
要求心算,并提问中下学生检验
点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)。
补充例题:已知角α的终边经过点P(x,—3),cosα=4/5,求α的其它五个三角函数值。
师生探索:已知y=—3,要求其它五个三角函数值,须知r=?,x=?。根据定义得=(方程思想),x>0,解得x=4,解答略。
2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2。
提问,据反馈信息作点评、修正。
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。
处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义。
强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值。
设计意图:及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把“培养学生分析解决问题的能力”贯穿在每一节课的课堂教学始终。
(七)回顾小结、建构网络
要求全体学生根据教师所提问题进行总结识记,提问检查并强调:
1、你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,在终边上任意取定一点P)
2、你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义)
3、你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置)
设计意图:
遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策。此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力。
(八)布置课外作业
1、书面作业:习题4。3第3、4、5题。
2、认真阅读p22“阅读材料:三角函数与欧拉”,了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况。
篇3:《任意角三角函数》数学说课稿
1、教学目标:
一、借助单位圆理解任意角的三角函数的定义。
二、根据三角函数的定义,能够判断三角函数值的符号。
三、通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。
四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。
2、教学重点与难点:
重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。
难点:任意角的三角函数概念的建构过程。
授课过程:
一、引入
在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。
二、创设情境
三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?
学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。
问题:
1、锐角三角函数能否表示成第二种比值方式?
2、点P能否取在终边上的其它位置?为什么?
3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。
练习:计算的各三角函数值。
三、任意角的三角函数的定义
角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?
尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?
评价学生给出的定义。给出任意角三角函数的定义。
四、解析任意角三角函数的定义
三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)
对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。
五、三角函数的应用。
1、已知角,求a的三角函数值。
2、已知角a终边上的一点P(-3,-4),求各三角函数值。
以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:
1、已知角如何求三角函数值?
2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)
3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。
4、探究:三角函数的值在各象限的符号。
六、小结及作业
教案设计说明:
新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。
首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。
其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的`辩思。这样也有助于学生对任意角三角函数概念的理解。
再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个“形”的问题,转换到直角坐标系下点的坐标这个“数”的过程的。培养数形结合的思想。
篇4:《任意角的三角函数》教学反思参考
任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突—“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)——0~2π范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)——不同象限下终边相同的角(逐渐形成计算一个任意角的`三角函数的操作过程)。
锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。
“任意角和弧度制”,应该完成用弧度制表示一个角α及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数”概念的教学更有意义。
新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计.
到底应该怎样去合理定义任意角的三角函数呢让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突.在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思.这样也有助于学生对任意角三角函数概念的理解.
让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个“形”的问题,转换到直角坐标系下点的坐标这个“数”的过程的.培养数形结合的思想.
《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断,教学反思《任意角的三角函数》教学反思》。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略,使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。
篇5:下学期>>4.3 任意角的三角函数
教学目标:
1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.
2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)
教学重点:
篇6:下学期>>4.3 任意角的三角函数
教学难点:
任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.
教学用具:
直尺、圆规、投影仪.
教学步骤:
1.设置情境
角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.
2.探索研究
(1)复习回忆锐角三角函数
我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.
(2)任意角的三角函数定义
如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .
定义:①比值 叫做 的正弦,记作 ,即 .
②比值 叫做 的余弦,记作 ,即 .
图1
③比值 叫做 的正切,记作 ,即 .
同时提供显示任意角的三角函数所在象限的课件
提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?
利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的'大小有关.
请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.
④比值 叫做 的余切,记作 ,则 .
⑤比值 叫做 的正割,记作 ,则 .
⑥比值 叫做 的余割,记作 ,则 .
可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.
(3)三角函数是以实数为自变量的函数
对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.
即:实数→角(其弧度数等于这个实数)→三角函数值(实数)
(4)三角函数的一种几何表示
利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.
图3
设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:
这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.
(5)例题讲评
【例1】已知角 的终边经过 ,求 的六个三角函数值(如图4).
解:∵
∴
提问:若将 改为 ,如何求 的六个三角函数值呢?(分 , 两种情形讨论)
【例2】求下列各角的六个三角函数值
(1) ;(2) ;(3) .
解:(1)∵当 时, ,
∴ , ,
不存在, , 不存在
(2)∵当 时, ,
∴ ,
不存在
不存在
(3)当 时, ,
∴
不存在 不存在
【例3】作出下列各角的正弦线,余弦线,正切线.(1) ;(2) .
解: , 的正弦线,余弦线,正切线分别为 .
【例4】求证:当 为锐角时, .
证明:如右图,作单位圆,当 时作出正弦线 和正切线 ,连
∵
∴
∴
利用三角函数线还可以得出如下结论
的充要条件是 为第一象限角.
的充要条件是 为第三象限角.
练习(学生板演,利用投影仪)
(1)角 的终边在直线 上,求 的六个三角函数值.
(2)角 的终边经过点 ,求 , , , 的值.
(3)说明 的理由. .
解答:
(1)先确定终边位置
①如 在第一象限,在其上任取一点 , ,则
,
②如 在第三象限,在终边上任取一点 ,则
,
(2)若 ,不妨令 ,则 在第二角限
∴
(3)在 终边上任取一点 ,因为 与 终边相同,故 也为角 终边上一点,所以 成立.
说明:以后会知道,求三角函数值的方法有多种途径.用定义求角 的三角函数值,是基本方法之一.当角终边不确定时,要首先确定终边位置,然后再在终边上取一个点来计算函数值.
3.反馈训练
(1)若角 终边上有一点 ,则下列函数值不存在的是( ).
A. B. C. D.
(2)函数 的定义域是( ).
A. B.
C. D.
(3)若 , 都有意义,则 .
(4)若角 的终边过点 ,且 ,则 .
参考答案:(1)D;(2)B;(3) 或8,说明点 在半径为 的圆上;(4)-6.
4.本课小结
利用定义求三角函数值,首先要建立直角坐标系,角顶点和始边要按既定的位置设置.角 的三角函数定义式,其实是比例的化身,它的背后是相似形在支称着,不过这个定义具有一般性,如轴上角的三角函数,如果没有定义作为论据,欲求其函数性就不是很容易.
分类讨论(角位置)是三角函数求值过程中,使用频率非常高的一个数学思想,而分类标准往往是四个象限及四个坐标半轴.
课时作业:
1.已知角 的终边经过下列各点,求角 的六个三角函数值.
(1) (2)
2.计算
(1)
(2)
(3)
(4)
3.化简
(1)
(2)
(3)
(4)
参考答案:
1.(1) , ,
, ,
,
(2) , ,
, ,
,
2.(1)-2;(2)8;(3)-1;(4)
3.(1)0;(2) ;(3) ;(4)
篇7:《任意角的三角函数》教学反思
《任意角的三角函数》教学反思
《任意角的三角函数》教学反思肥东县长临河中学 赵治龙
任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突―“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)――0~2π范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)――不同象限下终边相同的角(逐渐形成计算一个任意角的三角函数的操作过程)。
锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。
“任意角和弧度制”,应该完成用弧度制表示一个角α及其终边相同的角的集合如何表示,会对本节课“任意角的三角函数”概念的.教学更有意义。
新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计.
到底应该怎样去合理定义任意角的三角函数呢让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突.在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思.这样也有助于学生对任意角三角函数概念的理解.
让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个“形”的问题,转换到直角坐标系下点的坐标这个“数”的过程的.培养数形结合的思想.
《标准》把发展学生的数学应用意识和创新意识作为其目标之一,在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间,促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力,发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略,使学生认识到数学原来就来自身边的现实世界,是认识和解决我们生活和工作中问题的有力武器,同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。
篇8: 《任意角的三角函数》教学反思
三角函数的教学中,要充分发挥单位圆的作用,并且要注意逐渐使学生形成用单位圆讨论三角函数问题的意识和习惯,引导学生自主地用单位圆探索三角函数的有关性质,提高分析和解决问题的能力。在我们的教学中可以注意以下几点:
(1)进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页A组练习第二题,当堂批阅、统计,出错率60%,真的没有想到。
(2)这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的讲解,师生对三角函数概念的理解都有了质的飞跃。
(3)例题2变式的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。
(4)这节课也许是我设计得太自然了,台阶过密、跨度太小,学生在学习过程中没有遇到陷阱,没有产生激烈的思维碰撞,因此,看似顺畅,效果不佳。下一步要注意梯度的设计,台阶不要过密,要有一定的思维跨度。
写在最后,多媒体给中学教学带来了新工具,但同时也滋生了盲目跟风,个别教师对新课改理解不深、片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实,进一步表明过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。
篇9: 《任意角的三角函数》教学反思
首先,让学生回顾初中相关内容--锐角三角函数的概念、特殊角的三角函数值等;
然后将初中的锐角三角形放到直角坐标系中,出现了点的坐标,邻、对、斜变成了横、纵、r(r=|op|)。教材上的定义自然推出;
再次,将r特殊化令r=1,教材上的定义立即出现。
最后,进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。
但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页A组练习第二题,当堂批阅、统计,出错率60%,真的没有想到。
过后,我写下了四条教学反思:
(1)知识与能力:
这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的讲解,学生对三角函数概念的理解都有了质的飞跃。
(2)循序渐进:
A组练习二的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。
(3)教给与教会:
这节课也许是我设计得太自然了,台阶过密、
跨度太小,学生在学习过程中没有遇到陷阱,没有产生激烈的思维碰撞,因此,看似顺畅,效果不佳。下一步要注意梯度的设计,台阶不要过密,要有一定的思维跨度。
(4)不可忽视的浮夸风:
片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实了,计算器的使用也降低了学生基本的运算能力。
当统计完调研题后,我提问数学课代表,让他猜测答对率,他回答--80%(实际为40%)。进一步表明了学生过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。
篇10: 《任意角的三角函数》教学反思
改进的设想:
(1)回顾任意角、象限角与轴线角的概念.
(2)回顾锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.
(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特殊角的三角函数值?(意图是让学生说出)
重新定义的原则有哪些?
①和谐的原则,新定义应该包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;
②传承的原则,新定义应保留旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.
③相容的原则,新定义不能与一些熟悉的结论相矛盾.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;
④自然的原则,新定义不能出来得很奇怪,要让人接受必须顺其自然,可在我们前面讨论的象限角的基础上进行,换句话说,老师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,因为前面已讨论过象限角.
按上述几个原则让学生自主探究.
篇11: 《任意角的三角函数》教学反思
“任意角的三角函数”是三角函数这一章里最重要的一节课,是本章的基础,也是学生难以理解的地方。因此,本节课的重点放在了任意角的三角函数的理解上。在本节课的开头以学生所熟悉的直角三角形的锐角入手,引导学生尝试探究,逐步深入,引出任意三角函数的定义,以问题的形式巩固深化任意角三角函数值的计算。引导学生自主探究任意角的三角函数的生成过程,让学生在活动中体验数学与社会的联系,新旧知识的内在联系。
通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。
在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。
但是,要想让学生真正的学会并且灵活运用所学的知识,只靠老师上课讲是远远不够的,还需要学生在课下多做练习才行,所以,在讲课的基础上,我们还需要督促学生多做练习,因为只有熟才能够生巧,在以后的教学中,我还需要多多反思,多多探索。
篇12:《任意角的三角函数》中职数学说课稿
《任意角的三角函数》人教版中职数学说课稿
一说教材
1、地位和作用:节课是人教版中职数学(必修)8.2.1任意角三角函数的第一课时任意角的三角函数是本章教学内容的基本概念,对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。教教学重点:任意角三角函数的定义
教学重点:1正确理解三角函数的定义2任意角三角函数在各个象限的符号教学难点:标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:学生已经掌握的内容,学生学习能力
1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2.学生具备一定的自学能力,部分同学对数学的学习有兴趣和积极性。
3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行知识目标 1);,1、理解任意角的三角函数的定义;
2、三角函数值的符号
3、会求任意角的三角函数值;
4、体会类比,数形结合的思想。
能力目标:(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.
情感目标:
(1)学习转化的思想,
(2)培养严谨的学习态度;
二说教法
温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
三说学法
通过对已经掌握的锐角三角函数推广到任意角的三角函数定义,,引导出三角函数在各个象限内的符号,会求任意角的三角函数,学会从现有的知识探索新的知识,善于发现问题,提出问题,归纳问题,从而达到解决问题的目的。
四教学过程
总体来说,由旧及新,由易及难, 逐步加强,层层深入由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义再发展到直角坐标系中任意角三角函数的定义给定定义后通过应用定义又逐步发现新知识拓展完善定义.
1引入: 练习:sin300= cos300= tan300=
那么3000,300000呢?
复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答:
SinA=对边/斜边
cosA=对边/斜边
tanA=对边/斜边
我们已经学习了锐角三角函数,知道它是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?
2逐步拓展:在高中我们已经建立了直角坐标系,从直角三角形改为平面直角坐标系。
那么三角函数的定义能否也放到坐标系去研究呢?
把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
设a是一个任意角,它的`始边与x轴正半轴重合,在终边的终边上任取一点P(a,b),它与原点的距离r=>0,
表示三角函数;sin=, cos=, tan=,
(1) 叫做a的正弦,记作sina, sin=,
(2) x叫做a的余弦,记作cosa,即cosa=;
(3) ,叫做a的正切,记作tana,即tana=,。
我们将它们统称为三角函数。
从而得到
知识归纳一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.
3例题讲解
例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
知识归纳二:三个三角函数的定义域
例题变式1, 已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识归纳三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法:一全正,二正弦,三两切,四余弦,便于学生记忆
例题2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
拓展,如果不限制A的象限呢,可以留作课外探讨
4随堂练习
1、若,则在( B )
A.第一、四象限 B.第一、三象限 C.第一、二象限 D.第二、四象限
2、角终边上有一点(a,a)则sin= ( B )
A. B.-或 C.- D.1
5小结:
1、任意角三角函数的定义
2、三角函数值的符号
3、会求任意角三角函数值
6课堂作业P100 1,2,4
(学生演板,教师讲解)
课后分层作业(满足不同层次的学生)
必作P23 1,2,3 练习B
五板书设计
课题引入定义例一例二
小结
篇13:《任意角的三角函数》数学教学方案
《任意角的三角函数》数学教学方案
一、教学内容分析
本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。
二、学生学情分析
我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣。我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?
三、教学目标
1.理解任意角的三角函数的定义;
2.从任意角的三角函数的定义认识其定义域、函数值的符号;
3.能初步应用定义分析和解决与三角函数值有关的一些简单问题。
四、教学重点和难点
1.教学重点:任意角三角函数的定义。
2.教学难点:正弦、余弦、正切函数的定义域。
五、教学过程
第一部分——情景引入
问题1:如图是一个摩天轮,假设它的中心离地面的高度为,它的直径为2R,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置OA出发(如图1所示),过了30秒后,你离地面的高度为多少?过了45秒呢?过了秒呢?
【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的`素材,此情景设计应该有助于学生对知识的发生发展的理解。这个数学模型很好融合初中对三角函数的定交,也能放在直角坐标系中,很好地将锐角三角函数的定义向任意角三角函数过渡,揭示函数的本质。
第二部分——复习回顾锐角三角函数
让学生自主思考如何解决问题:“过了30秒后,你离地面的高度为多少?”
【分析】:作图如图2很容易知道:从起始位置OA运动30秒后到达P点位置,由题意知,作PH垂直地面交OA于M,又知MH=,所以本问题转变成求PH再次转变为求PM。要求PM就是回到初中所学的解直角三角形的问题即锐角的三角函数。
问题2:如图建立直角坐标系,设点,能你用直角坐标系中角的终边上的点的坐标来表示锐角的正弦函数的定义吗?能否也定义其它函数(余弦、正切)?
【学生自主探究】:
问题3:改变终边上的点的位置,这三个比值会改变吗?为什么?
【分析】:先由学生回答问题,教师再引导学生选几个点,计算比值,获得具体认识,并由相似三角形的性质证明。
【设计意图】:让学生深刻理解体会三角函数值不会随着终边上的点的位置的改变而改变,只与角有关系。
通过摩天轮的演示,让学生感受到第一象限角的正弦可以跟锐角正弦的定义一样。第四部分——给出任意角三角函数的定义
如图3,已知点为角终边上的点,点到顶点的距离为R,则:
【分析】:让学生通过刚才的模型进一步体验任意角三角函数的定义要点:点、点的坐标、点到顶点的距离。
问题4:当摩天轮的半径R=1时,三角函数的定义会发生怎样的变化。
篇14:《任意角的三角函数》优秀说课稿设计
《任意角的三角函数》优秀说课稿设计
各位同仁,各位专家:
我说课的课题是任意角的三角函数,内容取自苏教版高中实验教科书《数学》第四册 第1.2节
先对教材进行分析
教学内容:任意角三角函数的定义、定义域,三角函数值的符号.
地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程.
教学重点:任意角三角函数的定义
教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:
学生已经掌握的内容,学生学习能力
1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2.我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
知识目标:
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
能力目标:
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(1)在复习初中锐角三角函数的.定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性.
教学过程分析
总体来说, 由旧及新,由易及难,
逐步加强,逐步推进
先由初中的直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义.
具体教学过程安排
引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
SinA=对边/斜边=BC/AB
cosA=对边/斜边=AC/AB
tanA=对边/斜边=BC/AC
逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。
我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?
引导学生发现B的坐标和边长的关系.进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.
精心设计例题,引出新内容深化概念,完善定义
例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值
结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数
例题变式2, 已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制A的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业P16 1,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作P23 1(2),5(2),6(2)(4) 选作P23 3,4
板书设计(见PPT)
篇15:《任意角的三角函数》第一课时教学设计
《任意角的三角函数》第一课时教学设计
一、教材分析
这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数。任意角的三角函数通常是借助直角坐标系来定义的。三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键。因此,要重点地体会、理解和掌握三角函数的定义。
二、学生情况分析
本课时研究的是任意角的三角函数,学生在初中阶段曾研究过锐角三角函数,其研究范围是锐角;
其研究方法是几何的,没有坐标系的参与;
其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。
三、教学目标
知识与能力:借助单位圆理解意角的三角函数(正弦、余弦、正切)的定义。(能根据任意角的三角函数的定义求出具体的角的各三角函数值。)
过程与方法:在学习的过程中,培养学生用代数方法研究几何问题的思路。
情感态度与价值观:让学生积极参与知识的形成过程,经历知识的“发现”过程,获得发现的“经验”。
四、教学重点、难点分析
重点:理解任意角三角函数(正弦、余弦、正切)的定义。
难点:通过坐标求任意角的三角函数值。
五、教学方法与策略
教学过程中采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。
六、教学过程
问题1:现在请你回忆初中学过的锐角三角函数的定义,并思考一个问题:如果将锐角置于平面直角坐标系中,如何用直角坐标系中角的终边上的点的坐标表示锐角三角函数呢?
设计意图:将已有知识坐标化,分化难点。用新的观点再认识学生的已有知识经验,发挥其正迁移作用,同时使本课时的学习与学生的已有知识经验紧密联系,使知识有一个熟悉的起点,扎实的固着点。)
预计的回答:学生可以回忆出初中学过的锐角三角函数的定义,但是在用坐标语言表述时可能会出现困难――即使将角置于坐标系中但是仍然习惯用三角形边的比值表示锐角三角函数,需要教师引导学生将之转换为用终边上的`点的坐标表示锐角三角函数。
问题2:回忆弧度制中1弧度角的几何解释,它是借助于单位圆给出的,能否从中得到启示将上述定义的形式化简,化简的依据是什么?写出最简单的形式。
设计意图:引入单位圆。深化对单位圆作用的认识,用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。该问题与问题1结合,分步推进,降低难度,基本尊重教材的处理方式。
预计的困难:由于学生只接触过一次单位圆,对它所能起的作用只有一般的了解,所以需要教师的引导。也可以引导学生从形式上对上述定义化简,使得分母为1,之后通过分母的几何意义将之与单位圆结合起来。
单位圆中定义锐角三角函数:点P的坐标为(x,y),那么锐角α的三角函数可以用坐标表示为:
[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。
题3:大家现在能不能给出任意角的三角函数的定义。
设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义。
有学生给出任意角三角函数的定义,教师进行整理。
例1:(P12)例2:(P12)
学生练习:P15练习1、2。
小结:任意角的三角函数的定义。
作业:P20 A组1、2。
篇16:任意角数学教案设计
任意角数学教案设计
教学目标:
要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:
理解“正角”“负角”“象限角”“终边相同的角”的含义
教学难点:
“旋转”定义角
课标要求:
了解任意角的概念
教学过程:
一、引入
同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课
1.回忆:初中是任何定义角的?
(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
○○师:初中时,我们已学习了0~360角的`概念,它是如何定义的呢?
生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
o师:在体操比赛中我们经常听到这样的术语:“转体720”(即o转体2周),“转体1080”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?
00生:逆时针旋转30;顺时针旋转30.
师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周??,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。本节课将在已掌握~
角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.
2.角的概念的推广:
(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。其中射线OA叫角α的始边,射线OB叫角α的终边,O叫角α的顶点。
3.正角、负角、零角概念
师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它00等于30与750;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?
生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。
00师:如图3,以OA为始边的角α=-150,β=-660。特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。
师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。这里还有一点要说明:为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可简记为α.
4.象限角
师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。同学们已经经过预习,请一位同学回答什么叫:象限角?
生:角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。下面请大家将书上象限角的定义划好,同时思考这么三个问题:
1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?
2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?
3.是不是任意角都可以归结为是象限角,为什么?
处理:学生思考片刻后回答,教师适时予以纠正。
答:1.不行,始边包括端点(原点);
2.端点在原点上;
3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。
师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。
00000师生讨论:好,按照象限角定义,图中的30,390,-330角,都是第一象限角;300,-60
0角,都是第四象限角;585角是第三象限角。
师:很好,不过老师还有几事不明,要请教大家:
(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?
生:锐角是第一象限角,第一象限角不一定是锐角;
0师:(2)锐角就是小于90的角吗?
0生:小于90的角可能是零角或负角,故它不一定是锐角;
00师:(3)锐角就是0~90的角吗?
000000生:锐角:{θ|0<θ<90};0~90的角:{θ|0≤θ<90}.
学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?
0000(1)420;(2)-75;(3)855;(4)-510.
答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.
5.终边相同的角的表示法
师:观察下列角你有什么发现?390??330?30?1470??1770?
生:终边重合.
0师:请同学们思考为什么?能否再举三个与30角同终边的角?
0000000000生:图中发现390,-330与30相差360的整数倍,例如,390=360+30,-330=-360+30;
000与30角同终边的角还有750,-690等。
0师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差360的整数倍。例
0000000如:750=23360+30;-690=-23360+30。那么除了这些角之外,与30角终边相同的角还有:
000033360+30-33360+30
000043360+30-43360+30
000由此,我们可以用S={β|β=k3360+30,k∈Z}来表示所有与30角终边相同的角的集合。
师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示?
0生:S={β|β=α+k3360,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
篇17:数学三角函数倍角公式
关于数学的学习中,下面是我们对两角和公式知识的内容讲解,相信可以很好的帮助同学们的学习。
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
希望上面对数学中两角和公式知识的讲解学习,同学们都能很好的掌握,并在考试中取得优异成绩哦。
初中数学因式分解公式精讲
对于数学知识的讲解学习,下面是我们为大家讲解的因式分解公式知识,希望大家很好的掌握哦。
因式分解公式
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a平方+2ab+b平方
完全平方差公式: (a-b)平方=a平方-2ab+b平方
两根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式
立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
圆与弧的公式
正n边形的每个内角都等于(n-2)×180°/n
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2
内公切线长=d-(R-r)外公切线长=d-(R+r)
①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
定理相交两圆的连心线垂直平分两圆的公共弦
定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)
通过上面对圆与弧的公式知识的内容讲解学习,相信同学们已经能很好的掌握了吧,后面我们将进行更多的知识内容学习吧。
初中数学平行四边形定理公式精讲
下面是老师为大家带来的关于初中数学平行四边形定理公式知识,希望同学们认真学习下面老师讲解的内容。
平行四边形定理公式
平行四边形性质定理 1平行四边形的对角相等
平行四边形性质定理 2平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
平行四边形性质定理 3平行四边形的对角线互相平分
平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
通过上面对数学平行四边形定理公式知识的讲解学习,希望上面的内容给同学们的学习很好的帮助,相信同学们会从中收获很多的。
篇18:数学三角函数倍角公式
对于三角函数万能公式的知识内容学习,希望同学们都能很好的掌握下面讲解的内容。
万能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
三角函数万能公式为什么万能
万能公式为:
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
★ 竞聘精彩开场白
★ 推介会精彩开场白
★ 精彩培训开场白
★ 早会精彩开场白
★ 三角函数练习题
★ 三角函数习题
★ 精彩的演讲开场白
任意角三角函数精彩开场白(整理18篇)




